Journal of Superconductivity

, Volume 18, Issue 2, pp 299–307 | Cite as

Charge Transfer in YBCO Under Pressure with Bond Valence Sum Approach

  • M. R. Mohammadizadeh
  • M. Akhavan


The bond valence sum method has been developed to high pressures considering B0(p) for calculating the valences of atoms. This approach has the advantages of finding a universal B0(p) for all the atoms -at least in YBCO, ability to evaluate the valency of each atom, and charge neutrality requirement of the unit cell. As a result, a new structural refinement has led to a more exact structural detail. The position of apical oxygen is found to be specially crucial for hole distribution between the superconducting CuO2 planes and Cu–O charge reservoir chains. Under pressure, the hole concentration in CuO2 planes increases, but in the Cu–O chains decreases, consistent with the pressure induced charge transfer model in HTSC. Our results resolve the anomalous behavior of dTc/dp in YBCO.

Key Words

bond valence sum YBCO high pressure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. P. Attfield, A. L. Kharlanov, and J. A. McAllister, Nature 394, 157 (1998).CrossRefGoogle Scholar
  2. 2.
    A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott, Nature 362, 56 (1993).CrossRefGoogle Scholar
  3. 3.
    L. Gao, Y. Y. Xue, F. Chen, Q. Xiong, R. L. Meng, D. Ramirez, C. W. Chu, J. H. Eggert, and H. K. Mao, Phys. Rev. B 50, 4260 (1994).CrossRefGoogle Scholar
  4. 4.
    M. Akhavan, Physica B 321, 265 (2002).Google Scholar
  5. 5.
    M. R. Mohammadizadeh, H. Khosroabadi, and M. Akhavan, Physica B 321, 301 (2002).Google Scholar
  6. 6.
    Z. Yamani and M. Akhavan, Phys. Rev. B 56, 7894 (1997).CrossRefGoogle Scholar
  7. 7.
    Y. S. Yao, Y. F. Xiong, D. Jin, J. W. Li, F. Wu, J. L. Luo, and Z. X. Zhao, Physica C 282287, 49 (1997).Google Scholar
  8. 8.
    J. S. Schilling and S. Klots, in Physicsl Properties of High Temperature Superconductors, Vol. III, D.M. Ginsberg, ed. (World Scientific, Singapore, 1992), p. 59.Google Scholar
  9. 9.
    H. Takahashi and N. Mori, in Studies of High Temperature Superconductors, Vol. 16, A.V. Narlikar, ed. (Nova Science Publishers Inc., New York, 1995), p. 1.Google Scholar
  10. 10.
    J. D. Jorgensen, P. Shiyou, P. Lightfoot, D. G. Hinks, B. W. Veal, B. Dabrowski, A. P. Paulikas, R. Kleb, and I. D. Brown, Physica C 171, 93 (1990).Google Scholar
  11. 11.
    C. C. Almasan, S. H. Han, B. W. Lee, L. M. Paulius, M. B. Maple, B. W. Veal, J. W. Downey, A. P. Paulikas, Z. Fisk, and J. E. Schirber, Phys. Rev. Lett. 69, 680 (1992).PubMedGoogle Scholar
  12. 12.
    H. Khosroabadi, M. R. Mohammadizadeh, and M. Akhavan, Physica C 370, 85 (2002).Google Scholar
  13. 13.
    H. Khosroabadi, M. R. Mohammadizadeh, and M. Akhavan, Physica B 321, 360 (2002).Google Scholar
  14. 14.
    M. R. Mohammadizadeh, and M. Akhavan, Phys. Rev. B 68, 104516 (2003).Google Scholar
  15. 15.
    F. Farges, S. Rossano, and J. M. Delaye, Bull. Liaison S.F.M.C. 13, 58 (2001).Google Scholar
  16. 16.
    M. Isobe, M. Onoda, T. Ohta, K. Kimoto, E. Takayama-Muromachi, A. W. Hewat, and K. Ohoyariia, Phys. Rev. B 62, 11667 (2000).Google Scholar
  17. 17.
    M. W. Luiaso and P. M. Woodward, Acta Crystallogr. B 57, 725 (2001).PubMedGoogle Scholar
  18. 18.
    S. Y. Mao, Y. X. Huang, Z. B. Wei, J. X. Mi, Z. L. Huang, and J. T. Zhao, J. Solid State Chem. 149, 292 (2000).Google Scholar
  19. 19.
    F. Farges, D. Neuville, and G. E. Brown, Jr., Am. Mineral. 84, 1562 (1999).Google Scholar
  20. 20.
    S. Adams, Acta Crystallogr. B 57, 278 (2001).PubMedGoogle Scholar
  21. 21.
    I. D. Brown, J. Solid State Chem. 90, 155 (1991).Google Scholar
  22. 22.
    I. D. Brown, J. Solid State Chem. 82, 122 (1989).Google Scholar
  23. 23.
    M. R. Mohammadizadeh, H. Khosroabadi, H. Akbarzadeh, and M. Akhavan, in Magnetic and Superconducting Materials (MSM-99), M. Akhavan, J. Jensen, and K. Kitazawa, eds. (World Scientific, Singapore, 2000), Vol. A, p. 251; H. Khosroabadi, M. R. Mohammadizadeh, and M. Akhavan, Iran. J. Phys. Res. 3, 59 (2002).Google Scholar
  24. 24.
    I. D. Brown and D. Altermatt, Acta Crystallogr. B 41, 244 (1985).Google Scholar
  25. 25.
    J. L. Tallon, Physica C 168, 85 (1990).Google Scholar
  26. 26.
    Z. Akase, Y. Tomokiyo, Y. Tanaka, and M. Watanabe, Physica C 338, 137 (2000).Google Scholar
  27. 27.
    Y. Tokura, J. B. Torrance, T. C. Huang, and A. I. Nazzal, Phys. Rev. B 38, 7156 (1988).Google Scholar
  28. 28.
    I. D. Brown, private communication.Google Scholar
  29. 29.
    H. M. Shao, S. A. Aruna, C. J. Wang, M. S. Zhuo, X. L. Sun, Y. M. Cai, and X. X. Yao, Physica C 341–348, 275 (2000).Google Scholar
  30. 30.
    I. D. Brown, Acta Crystallogr. B 48, 553 (1992); I.D. Brown, The Chemical Bond in Inorganic Chemistry (Oxford University Press, Oxford, 2001).Google Scholar
  31. 31.
    J. D. Jorgensen, B. W. Veal, A. P. Paulikas, L. J. Novvicki, G. W. Crabtrce, H. Glaus, and W. K. Kwok, Phys. Rev. B 41, 1863 (1990).Google Scholar
  32. 32.
    D. H. Ha, S. Byon, and K. W. Lee, Physica C 340, 243 (2000).Google Scholar
  33. 33.
    N. P. Ong, in: Physical Properties of High Temperature Superconductors Vol. II, D. M. Ginsberg, ed. (World Scientific, Singapore, 1990), p. 459.Google Scholar
  34. 34.
    V. Psychairs, C. Mitros, A. Koufoudakis, H. Gamari-Seale, D. Niarchos, N. Kalitsounakis, N. Poulakis, D. Palles, and E. Liarokapis, Physica C 267, 211 (1996).Google Scholar
  35. 35.
    H. Akbarzadeh and M. R. Mohammadizadeh, Computat Mater. Sci. 8, 335 (1997).Google Scholar
  36. 36.
    J. Clayhold, S. Hagen, Z. Z. Wang, N. P. Ong, J. M. Tarascon, and P. Barboux, Phys. Rev. B 39, 777 (1989).Google Scholar
  37. 37.
    Y. Zhao, H. K. Liu, and S. X. Dou, Supercond. Sci. Technol. 5, 295 (1992).Google Scholar
  38. 38.
    R. J. Cava, A. W. Hewat, E. A. Hewat, B. Batlogg, M. Marezio, K. M. Rabe, J. J. Krajewski, W. F. Peck, Jr., and L. W. Rupp Jr., Physiea C 165, 419 (1990).Google Scholar
  39. 39.
    T. Minerva and C. Calandra, Physica C 170, 532 (1990).Google Scholar
  40. 40.
    P. E. Miceli, J. M. Tarascon, L. H. Greene, P. Barboux, J. D. Jorgensen, J. J. Rhyne, and D. A. Neumann, Phys. Rev. B 37, 5932 (1988).Google Scholar
  41. 41.
    M. W. Shafer, T. Penney, B. L. Olson, R. L. Greene, and R. H. Kock, Phys. Rev. B 39, 2914 (1989).Google Scholar
  42. 42.
    X. J. Chen, C. D. Gong, and Y. B. Yu, Phys. Rev. B 61, 3691 (2000).Google Scholar
  43. 43.
    X. Zhang, K. W. Yip, and C. K. Ong, J. Rhys. Chem. Solids 56, 153 (1995).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Magnet Research Laboratory (MRL), Department of PhysicsSharif University of TechnologyTehranIran

Personalised recommendations