Advertisement

Journal of Superconductivity

, Volume 18, Issue 1, pp 87–92 | Cite as

Magnetic and Electrical Properties of Random and Digital Alloys of GaSb:Mn

  • G. B. Kim
  • M. Cheon
  • S. Wang
  • H. Luo
  • B. D. McCombe
Article

Abstract

We have investigated the effect of Sb/Ga flux ratio on the magnetic and electronic properties of Mn-incorporated GaSb random and digital alloys grown by low-temperature molecular beam epitaxy. The magnetic and magnetotransport properties of Ga1−xMn x Sb random alloys are strongly dependent on Sb/Ga flux ratio. Clear square-like hysteresis loops were observed for Sb/Ga flux ratios between 4.60 and 5.25. The coercive field and negative magnetoresistance increase with decreasing Sb/Ga flux ratio, while the Curie temperature remains constant at approximately 23 K, with no systematic dependence on the hole density. In contrast, the Curie temperatures for the GaSb:Mn digital alloys with different Mn surface coverages depend significantly on the Sb/Ga flux ratio, and it is also directly correlated with the hole density.

Keywords

GaSb:Mn digital alloys Ga1−xMnxSb random alloys Sb/Ga flux ratio MBE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, R. Dietl, Y. Ohno, and K. Ohtani, Nature 408, 944 (2000).Google Scholar
  2. 2.
    G. B. Kim, M. Cheon, S. Wang, H. Luo, B. D. McCombe, X. Liu, Y. Sasaki, T. Wojtowicz, and J. K. Furdyna, Physica E 20, 355 (2004).Google Scholar
  3. 3.
    S. Koshihara, A. Oiwa, M. Hirasawa, S. Katsumoto, Y. Iye, C. Urano, H. Takagi, and H. Menekata, Phys. Rev. Lett. 78(24), 4617 (1997).Google Scholar
  4. 4.
    F. Matsukura, D. Chiba, T. Omiya, E. Abe, T. Dietl, Y. Ohno, K. Ohtani, and H. Ohno, Physica E 12, 351 (2002).Google Scholar
  5. 5.
    X. Chen, M. Na, M. Cheon, S. Wang, H. Luo, B. D. McCombe, X. Liu, Y. Sasaki, T. Wojtowicz, J. K. Furdyna, S. J. Potashnik, and P. Schiffer, Appl. Phys. Lett. 81(3), 511 (2002).Google Scholar
  6. 6.
    F. Matsukura, E. Abe, and H. Ohno, J. Appl. Phys. 87(9), 6442 (2000).Google Scholar
  7. 7.
    H. Shimizu, T. Hayashi, T. Nishinaga, and M. Tanaka, Appl. Phys. Lett. 74(3), 39(1999).Google Scholar
  8. 8.
    T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B 63, 195205 (2001).Google Scholar
  9. 9.
    T. Jungwirth, Qian Niu, and A. H. MacDonald, Phys. Rev. Lett. 88, 207208 (2002).Google Scholar
  10. 10.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).CrossRefGoogle Scholar
  11. 11.
    S. C. Erwin and A. G. Petukhov, Phys. Rev. Lett. 89(22), 227201 (2002).Google Scholar
  12. 12.
    K. M. Yu, W. Walukiewicz, T. Wojtowicz, I. Kuryliszyn, X. Liu, Y. Sasaki, and J. K. Furdyna, Phys. Rev. B 65, 201303 (2002).Google Scholar
  13. 13.
    K. Y. Wang, K. W. Edmunds, R. P. Campion, B. L. Gallagher, N. R. S. Farley, M. Sawicki, P. Boguslawski, and T. Dietl, J. Appl. Phys. 95(11), 6512 (2004).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • G. B. Kim
    • 1
  • M. Cheon
    • 1
  • S. Wang
    • 1
  • H. Luo
    • 1
  • B. D. McCombe
    • 1
  1. 1.Department of Physics and CAPEMUniversity at BuffaloSUNY BuffaloNew York

Personalised recommendations