Journal of Superconductivity

, Volume 18, Issue 5–6, pp 785–789 | Cite as

Excitonic Collective Mode and Negative Compressibility in Electron Liquids

  • Yasutami Takada


A highly self-consistent theory maintaining the exact functional relations between the electron self-energy and the vertex part is employed to calculate the dielectric function \(\varepsilon({\bf q},\omega)\) very accurately in the homogeneous electron gas in two- and three-dimensions. By investigating the full dynamical properties of \(\varepsilon({\bf q},\omega)\) thus obtained, we find that the softening of excitonic collective modes is responsible for making the compressibility of the system negative at sufficiently low densities.


negative compressibility vertex correction excitonic effect dielectric function electron gas 


  1. 1.
    J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 68, 674 (1992).ADSCrossRefGoogle Scholar
  2. 2.
    G. D. Mahan, Many-Particle Physics, 3rd edn. (Kluwer Academic/Plenum Press, New York, 2000), p. 355.Google Scholar
  3. 3.
    B. Tanatar and D. M. Ceperley, Phys. Rev. B 39, 5005 (1989).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Takada, Phys. Rev. B 43, 5979 (1991).ADSCrossRefGoogle Scholar
  5. 5.
    O. V. Dolgov, D. A. Kirzhnits, and E. G. Maksimov, Rev. Mod. Phys. 53, 81 (1981).ADSCrossRefGoogle Scholar
  6. 6.
    K. Takayanagi and E. Lipparino, Phys. Rev. B 56, 4872 (1997).ADSCrossRefGoogle Scholar
  7. 7.
    S. Moroni, D. M. Ceperley, and G. Senatore, Phys. Rev. Lett. 75, 689 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    C. A. Kukkonen and A. W. Overhauser, Phys. Rev. B 20, 550 (1979).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Takada, Phys. Rev. Lett. 87, 226402 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Takada and H. Yasuhara, Phys. Rev. Lett. 89, 216402 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Takada, Phys. Rev. B 52, 12708 (1995).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Takada, Int. J. Mod. Phys. B 15, 2595 (2001).ADSCrossRefGoogle Scholar
  13. 13.
    E. K. U. Gross, J. F. Dobson, and M. Petersilka, in Density Functional Theory II, R. F. Nalewajski, ed. (Springer, Berlin, 1996), Ch. 2, p. 81.Google Scholar
  14. 14.
    Z. Qian and G. Vignale, Phys. Rev. B 65, 235121 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    D. Pines and P. Nozières, The theory of Quantum Liquids, Vol. 1 (Benjamin, New York, 1966), p. 220.Google Scholar

Copyright information

© Springer Science + Business Media, Inc 2005

Authors and Affiliations

  • Yasutami Takada
    • 1
  1. 1.Institute for Solid State PhysicsUiversity of TokyoKashiwaJapan

Personalised recommendations