Journal of Superconductivity

, Volume 18, Issue 5–6, pp 731–735 | Cite as

Lattice Anomalies in (La,Sr)2CuO4 Under Epitaxial Strain Probed by Polarized X-Ray Absorption Spectroscopy

  • H. Oyanagi
  • N. L. Saini
  • A. Tsukada
  • M. Naito


Local lattice anomalies in optimally doped T-(La,Sr)2CuO4 single crystal like thin films (T c = 43.4 K) grown by molecular-beam epitaxy have been studied by the in-plane polarized Cu K-edge extended X-ray absorption fine structure (EXAFS). The results indicate temperature-dependent local atomic displacements which are anomalous at the T c and below a higher temperature T s as demonstrated by a change in the mean square relative displacement of the Cu–O bond \(\sigma _{{\rm Cu}-{\rm O}}^2\), i.e., a sharp drop at the T c and a gradual deviation from a noncorrelated Debye-like behavior below T s where the spatial inhomogeneity appears. We find that the magnitude of the Cu–O displacement changes at the T c, \(\Delta \sigma _{{\rm Cu}-{\rm O}}^2\) is enhanced by compressive strain while the tendency of charge segregation is suppressed. The results suggest that the uniaxial pressure effects stabilize the system by decreasing the onset temperature and magnitude of spatial heterogeneity.


epitaxial strain polarized EXAFS local lattice anomalies MSRD 



The authors express their thanks to K. Oka and T. Ito for providing a bulk LSCO single crystal. The authors also thank A. Bianconi, A. Bussmann-Holder, T. Egami, and H. Kamimura for continuous encouragement and fruitful discussions.


  1. 1.
    A. Bianconi, N. L. Saini, A. Lanzara, M. Missori, T. Rossetti, H. Oyanagi, H. Yamaguchi, K. Oka, and T. Ito, Phys. Rev. Lett. 76, 3412 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    E. S. Bozin, G. H. Kwei, H. Takagi, and S. J. L. Billinge, Phys. Rev. Lett. 84, 5856 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    R. J. McQueeney, Y. Petrov, T. Egami, M. Yethiraj, G. Shirane, and Y. Endoh, Phys. Rev. Lett. 82, 628 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    A. Lanzara, G.-M. Zhao, N. L. Saini, A. Bianconi, K. Conder, H. Keller, and K. A. Müller, J. Phys.:Condens. Matter 11, L541 (1999).ADSCrossRefGoogle Scholar
  5. 5.
    D. Rubio Temprano, J. Mesot, S. Janssen, K. Conder, A. Furrer, H. Mutka, and K. A. Müller, Phys. Rev. Lett. 84, 1990 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    R. P. Sharma, S. B. Ogale, Z. H. Zhang, J. R. Liu, W. K. Wu, B. Veal, A. Paulikas, H. Zhang, and T. Venkatesan, Nature 404, 736 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    A. Lanzara, P. V. Bogdanov, X. J. Zhou, S. A. Keller, D. L. Feng, E. D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.-I. Shimoyama, T. Noda, S. Uchida, Z. Hussain, and Z.-X. Shen, Nature 412, 510 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    T. Egami, S. Ishihara, and M. Tachiki, Phys. Rev.. B55, 3163 (1993).Google Scholar
  9. 9.
    T. Egami, W. Dmowski, R. J. McQueeney, M. Arai, N. Seiji, and H. Yamauchi, J. Supercond.. 8, 587 (1995).ADSCrossRefGoogle Scholar
  10. 10.
    H. Saito and M. Nato, Physica C 280, 178 (1997).ADSCrossRefGoogle Scholar
  11. 11.
    J.-P. Locquet, J. Perret, J. Fompeyrine, E. Machler, J. W. Seo, and G. van Tendeloo, Nature 394, 453 (1998).ADSCrossRefGoogle Scholar
  12. 12.
    I. Bozoic, G. Logvenov, I. Belca, B. Narimbetov, and I. Sveklo, Phys. Rev. Lett. 89, 107001 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    N. Takahashi, Y. Iye, T. Tamegai, C. Murayama, N. Mori, S. Yomo, N. Okazaki, and K. Kitazawa, Jpn. J. Appl. Phys. 28, L762 (1989); N. Yamada and M. Ido, Physica C 203, 240 (1992).Google Scholar
  14. 14.
    M. Abrecht, D. Ariosa, D. Cloetta, S. Mitrovic, M. Onellion, X. X. Xi, G. Margaritondo, and D. Pavuna, Phys. Rev. Lett. 91, 57002 (2003).ADSCrossRefGoogle Scholar
  15. 15.
    N. L. Saini, A. Lanzara, H. Oyanagi, H. Yamaguchi, K. Oka, T. Itoo, and A. Bianconi, Phys. Rev. B 55, 12759 (1997).ADSCrossRefGoogle Scholar
  16. 16.
    N. L. Saini, H. Oyanagi, and A. Bianconi, J. Supercond.. 17, 103 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    N. L. Saini, H. Oyanagi, V. Scagnoi, T. Ito, K. Oka, and A. Bianconi, J. Phys. Soc. Jpn. 72, 829 (2003).ADSCrossRefGoogle Scholar
  18. 18.
    H. Oyanagi, C. Fonne, D. Gutknecht, P. Dressler, R. Henck, M.-O. Lampert, S. Ogawa, and K. Kasai, Nucl. Instrum. Methods Ao 513, 340 (2002).ADSCrossRefGoogle Scholar
  19. 19.
    J. J. Rehr, S. I. Zabrinsky, and R. C. Albers, Phys. Rev. Lett. 69, 3397 (1992).ADSCrossRefGoogle Scholar
  20. 20.
    M. Naito and H. Sato, Appl. Phys. Lett. 67, 2557 (1995).ADSCrossRefGoogle Scholar
  21. 21.
    N. L. Saini, H. Oyanagi, V. Scagnoli, T. Ito, K. Oka, and A. Bianconi, Europhys. Lett. 63, 125 (2003).ADSCrossRefGoogle Scholar
  22. 22.
    H. Oyanagi, K. Haga, and Y. Kuwahara, Rev. Sci. Instrum. 67, 350 (1996).ADSCrossRefGoogle Scholar
  23. 23.
    N. L. Saini, M. Filippi, H. Oyanagi, H. Ihara, A. Iyo, and A. Bianconi, Phys. Rev. B. 68, 104507 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).ADSCrossRefGoogle Scholar
  25. 25.
    H. Oyanagi, A. Tsukada, M. Naito, and N. L. Saini, in press.Google Scholar

Copyright information

© Springer Science + Business Media, Inc 2006

Authors and Affiliations

  • H. Oyanagi
    • 1
  • N. L. Saini
    • 2
  • A. Tsukada
    • 3
  • M. Naito
    • 4
  1. 1.National Institute of Advanced Industrial Science and TechnologyTsukubaJapan
  2. 2.INFM – Laboratorio Regionale SUPERMATSalerno & Dipartimento di Fisica, Università di Roma “La Sapienza”RomaItaly
  3. 3.NTT Basic Research LaboratoriesAtsugiJapan
  4. 4.Tokyo University of Agriculture and TechnologyKoganei-shiJapan

Personalised recommendations