Journal of Superconductivity

, Volume 18, Issue 4, pp 567–572 | Cite as

Synthesis and Optical Studies of Superconducting MgB2 Thin Films

  • M. Bleiweiss
  • J. Amirzadeh
  • M. Yin
  • A. Lungu
  • T. Datta
Original Paper

Synthesis and optical transmission of MgB2 thin films on optically transparent glass are reported. In the 400–1000 nm regime as deposited films show high metallic reflectivity and very little transmission. After deposition, the films were annealed ex situ and rendered superconducting with T c of 38 K, approaching that of the bulk material. The reaction conditions where quite soft ∼10 min at 550°C. The optical absorption coefficient, α and photon energy, E followed a Tauc-type behavior, \((\alpha E)^{1/2} = \beta _T (E - E_{\rm g} )\). The band gap (E g) was observed to peak at 2.5 eV; but, the slope parameter β T behaved monotonically with reaction temperature. Our results indicate that an intermediate semiconducting phase is produced before the formation of the superconducting phase; also optical measurements provide valuable information in monitoring the synthesis of MgB2 from its metallic constituents. In addition these films have interesting optical properties that may be integrated into optoelectronics.


MgB2 thin film clear glass substrate optical absorption band gap. 



The research at the University of South Carolina was partially supported by a grant from the SC NanoCenter.


  1. 1.
    C. P. Poole, T. Datta, and H. Farach, Copper Oxide Superconductors (Wiley, New York, 1987).Google Scholar
  2. 2.
    J. Akimitsu, Symposium on Transition Metal Oxides, Sendai, Japan, 1 January 2001.Google Scholar
  3. 3.
    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).CrossRefPubMedADSGoogle Scholar
  4. 4.
    R. J. Cava, Nature 410, (2001).Google Scholar
  5. 5.
    D. C. Larbalestier, L. D. Cooley, M. O. Rikel, A. A. Polyanskii, J. Jiang, S. Patnaik, X. Y. Cai, D. M. Feldmann, A. Gurevich, A. A. Squitieri, M. T. Naus, C. B. Eom, E. E. Hellstrom, R. J. Cava, K. A. Regan, N. Rogado, M. A. Hayward, T. He, J. S. Slusky, P. Khalifah, K. Inumaru, and M. Haas, Nature 410, 186 (2001). CrossRefPubMedADSGoogle Scholar
  6. 6.
    A. Berenov, Z. Lockman, X. Qi, and J. L. MacManus-Driscoll, Appl. Phys. Lett. 79, 4001 (2001).CrossRefADSGoogle Scholar
  7. 7.
    A. Brinkman, D. Mijatovic, G. Rijnders, V. Leca, H. J. H. Smilde, I. Oomen, A. A. Golubov, F. Roesthuis, S. Harkema, and H. Hilgenkamp, Physica C 353, 1 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    P. C. Canfield, D. K. Finnemore, S. L. Bud'ko, J. E. Ostenson, G. Lapertot, C. E. Cunningham, and C. Petrovic, Phys. Rev. Lett. 86, 2423 (2001).CrossRefPubMedADSGoogle Scholar
  9. 9.
    A. V. Pronin, A. Pimenov, A. Loidl, and S. I. Krasnosvobodtsev, Phys. Rev. Lett. 87, 097003 (2001).CrossRefPubMedADSGoogle Scholar
  10. 10.
    A. Berenov, Z. Lockman, X. Qi, and J. L. MacManus-Driscoll, Appl. Phys. Lett. 79, 4001 (2001).CrossRefADSGoogle Scholar
  11. 11.
    K. Ueda and M. Naito, Appl. Phys. Lett. 79, 2046 (2001).CrossRefADSGoogle Scholar
  12. 12.
    J. J. Tu, G. L. Carr, V. Perebeinos, C. C. Homes, M. Strongin, P. B. Allen, W. N. Kang, E.-M. Choi, H.-J. Kim, and S.-I. Lee, Phys. Rev. Lett. 87, 277001 (2001).CrossRefPubMedADSGoogle Scholar
  13. 13.
    M. Paranthaman, Appl. Phys. Letts. 78, 3669 (2001).CrossRefADSGoogle Scholar
  14. 14.
    K. Ueda and M. Naito, Appl. Phys. Lett. 79, 2046 (2001).CrossRefADSGoogle Scholar
  15. 15.
    S. R. Shinde, S. B. Ogale, R. L. Greene, and T. Venkatesan, Appl. Phys. Lett. 79, 227 (2001).CrossRefADSGoogle Scholar
  16. 16.
    A. Gurevich, S. Patnaik, V. Braccini, K. H. Kim, C. Mielke, X. Song, L. D. Cooley, S. D. Bu, D. M. Kim, J. H. Choi, L. J. Belenky, J. Giencke, M. K. Lee, W. Iian, X. Q. Pan, A. Siri, E. E. Hellstrom, C. B. Eom and D. C. Larbalestier, Supercond. Sci. Technol. 17, 278 (2004).CrossRefADSGoogle Scholar
  17. 17.
    H. J. Lee, J. H. Jung, K. W. Kim, M. W. Kim, T. W. Noh, Y. J. Wang, W. N. Kang, E.-M. Choi, H.-J. Kim, and S.-I. Lee, Phys. Rev. B 65, 224519 (2002).CrossRefADSGoogle Scholar
  18. 18.
    R. A. Kaindl, M. A. Carnahan, J. Orenstein, D. S. Chemla, H. M. Christen, H.-Y. Zhai, M. Paranthaman, and D. H. Lowndes, Phys. Rev. Lett. 88, 027003 (2002).CrossRefPubMedADSGoogle Scholar
  19. 19.
    W. Tianand and X. Q. Pan, Appl. Phys. Lett. 81, 685 (2002).CrossRefADSGoogle Scholar
  20. 20.
    N. Rogado, M. A. Hayward, and K. A. Regan, J. Apl. Phys. 91, 274 (2002).CrossRefADSGoogle Scholar
  21. 21.
    B. B. Jin, T. Dahm, A. I. Gubin, H. J. Kim, E. M. Choi, S. I. Lee, W. N. Kang, and N. Klein, Physica C 408(10), 72 (2004).ADSGoogle Scholar
  22. 22.
    A. Dulcic, M. Poek, D. Paar, E. M. Choi, H. J. Kim, W. N. Kang, and S. I. Lee, Physica C 408(10), 662 (2004).ADSGoogle Scholar
  23. 23.
    D. K. Finnemore, J. E. Olstenson, S. L. Bud'ko, G. Lapertot and P. C. Canfield, Phys. Rev. lett. 86, 2420 (2001).CrossRefPubMedADSGoogle Scholar
  24. 24.
    E. M. Choi, H. S. Lee, H. J. Kim, and S. K. Lee, Appl. Phys. Lett. 84, 82 (2004).CrossRefADSGoogle Scholar
  25. 25.
    T. B. Massalaski, Binary alloy Phase Diagrams, Vol. 1, 2nd edn. (ASM International, Mate Park, Ohio, 1990).Google Scholar
  26. 26.
    T. Datta, J. A. Woollam, and W. Notohamiprodjo, Phys. Rev. B. 40, 5956 (1989).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • M. Bleiweiss
    • 1
  • J. Amirzadeh
    • 2
  • M. Yin
    • 3
  • A. Lungu
    • 2
  • T. Datta
    • 2
  1. 1.Naval Academy Preparatory SchoolNewportUSA
  2. 2.Physics and Astronomy Department & NanoCenterUniversity of South CarolinaColumbiaUSA
  3. 3.Physics and Engineering Department Benedict College ColumbiaColumbiaUSA

Personalised recommendations