Journal of Superconductivity

, Volume 18, Issue 4, pp 489–497 | Cite as

Fish-Tail Effect and Irreversibility Field of (Cu, C)Ba2Ca3Cu4O x -(LiF) y Superconductor

  • P. Badica
  • V. Sandu
  • G. Aldica
  • A. Iyo
  • H. Kito
  • M. Hirai
  • Y. Tanaka
Original Article

Addition of (LiF) y ≤0.15, and of proper amount of (AgO) z =0.45–0.8 as oxidizing agent, to (Cu, C)Ba2Ca3Cu4O10+δ superconductor is useful to control and to shift the doping characteristics (hole density and distribution, and level of disorder) into the region where the irreversible properties, i.e. fish-tail effect (FTE) and irreversibility field H irr are improved. Among notable effects are the development of the second magnetization peak with a higher amplitude J c,max and the enhancement of H irr at high temperatures, above a certain value T * which depends on both y LiF and z AgO. The best results are obtained for the sample with y LiF = 0.1 and z AgO = 0.73. This sample preserves its single phase Cu, C-1234 composition. The influence on the FTE and H irr of the interplay between doping characteristics, controlled by LiF and AgO content, is discussed.


(Cu, C)Ba2Ca3Cu4O10±δ LiF-addition fish-tail effect irreversibility field high-Tc superconductor 



Authors would like to thank Prof K. Togano (IMR, Tohoku University, Japan) for reading the manuscript and for allowing the use of a SQUID magnetometer and to Dr A. Crisan for continuous support of this work (NIMP, Romania). P.B. gratefully acknowledges STA/JSPS fellowship. This work was partially supported by Ministry of Education, Research and Youth, Romania under CERES program.


  1. 1.
    J. Shi, X. S. Ling, R. Ling, D. A. Bonn, and W. N. Hardy, Phys. Rev. B 60, R12593 (1999).CrossRefADSGoogle Scholar
  2. 2.
    A. B. Pippard, Phil. Mag. 19, 217 (1969).ADSCrossRefGoogle Scholar
  3. 3.
    A. A. Zhukov, H. Küpfer, G. Perkins, L. F. Cohen, A. D. Caplin, S. A. Klestov, V. I. Voronkova, T. Wolf, and H. Wühl, Phys. Rev. B 51, 12704 (1995).CrossRefADSGoogle Scholar
  4. 4.
    S. Senoussi, F. Mosbah, K. Frikach, S. Hammond, and P. Manuel, Phys. Rev. B 53, 12321 (1996).CrossRefADSGoogle Scholar
  5. 5.
    D. Giller, A. Shaulov, Y. Yeshurun, and J. Giapintzakis, Phys. Rev. B 60, 106 (1999).CrossRefADSGoogle Scholar
  6. 6.
    H. Yamauchi, and M. J. Karppinen, Low. Temp. Phys. 117, 813 (1999). CrossRefGoogle Scholar
  7. 7.
    H. Suematsu, T. Ito, T. Katsura, M. Karppinen, and H. Yamauchi, Supercond. Sci. Technol. 13, 930 (2000).CrossRefADSGoogle Scholar
  8. 8.
    W. Glafke, H. Ohashi, P. Schnier, G. Hoare, M. Kellicutt, M. Suzuki, and M. S. Whittingham, AIP Conf. Proc. 273, 302 (1997).ADSCrossRefGoogle Scholar
  9. 9.
    S. Moehlcke, C. H. Westphal, M. S. Tarikashvili, J. A. Davis, and I. C. L. Torriani, Physica C 211, 113 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    R. Berger, P. Onnerud, Y. Laligant, and A. Le Bail, J. Alloys Compounds 190, 295 (1993).CrossRefGoogle Scholar
  11. 11.
    C.-Q. Jin, S. Adachi, X.-J. Wu, H. Yamauchi, and S. Tanaka, Physica C 223, 238 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    M. A. Alario-Franco, C. Chaillout, J. J. Caponi, J.-L. Tholence, and B. Souletie, Physica C 222, 52 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    H. Ihara, K. Tokiwa, H. Ozawa, M. Hirabayashi, A. Negishi, N. Matuhata, and Y. S. Song, Jpn. J. Appl. Phys. 133, L503 (1994).CrossRefGoogle Scholar
  14. 14.
    T. Kawashima, Y. Matsui, and E. Takayama-Muromachi, Physica C 224, 69 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    M. Karppinen, and H. Yamauchi, Int. J. Inorg. Mat. 2, 589 (2000).CrossRefGoogle Scholar
  16. 16.
    M. Karppinen, H. Yamauchi, T. Nakane, and M. Kotiranta, Physica C 338, 18 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    P. Badica, A. Iyo, G. Aldica, H. Kito, A. Crisan, and Y. Tanaka, Supercond. Sci. Technol. 17, 430 (2004).CrossRefADSGoogle Scholar
  18. 18.
    Y. Ishiura, Y. Tanaka, A. Iyo, and H. Ihara, Japan Patent No. 3401537 (2003).Google Scholar
  19. 19.
    C. W. Hagen, and R. Griessen, Phys. Rev. Lett. 24, 2857 (1992).Google Scholar
  20. 20.
    Y. Abulafia, A. Shaulov, Y. Wolfus, R. Prozorov, R. Burlachkov, Y. Yeshurun, D. Majer, E. Zeldov, H. Wühl, V. B. Geshkenbein, and V. M. Vinokur, Phys. Rev. Lett. 77, 1596 (1996).CrossRefPubMedADSGoogle Scholar
  21. 21.
    G. Blatter, M. V. Feigelman, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).CrossRefADSGoogle Scholar
  22. 22.
    M. Karppinen, and H. Yamauchi, Phil. Mag. B 79, 343 (1999).CrossRefADSGoogle Scholar
  23. 23.
    H. Yamauchi, M. Karppinen, K. Fujinami, T. Ito, H. Suematsu, K. Matsuura, and K. Isawa, Supercond. Sci. Technol. 11, 1006 (1998).CrossRefADSGoogle Scholar
  24. 24.
    P. Rodrigues Jr., J. Schaf, and P. Pureur, Phys. Rev. B 49, 15292 (1994).CrossRefADSGoogle Scholar
  25. 25.
    V. N. Vieira, J. P. da Silva, and P. Schaf, Phys. Rev. B 64, 094516 (2001).CrossRefADSGoogle Scholar
  26. 26.
    V. G. Fleisher, R. Laiho, E. Lähderanta, Yu. P. Stepanov, and K. B. Traito, Physica C 272, 26 (1996).ADSCrossRefGoogle Scholar
  27. 27.
    L. Burlachkov, Phys. Rev. B 47, 8056 (1993).CrossRefADSGoogle Scholar
  28. 28.
    T. Matsushita, E. S. Otobe, N. Wada, Y. Tokohama, and H. Yamauchi, Physica C 397, 38 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • P. Badica
    • 1
    • 2
    • 5
  • V. Sandu
    • 2
  • G. Aldica
    • 2
  • A. Iyo
    • 1
    • 3
  • H. Kito
    • 1
    • 3
  • M. Hirai
    • 1
    • 4
  • Y. Tanaka
    • 1
    • 3
  1. 1.Nanoelectronics Research Institute of National Institute for Advanced Industrial Science and TechnologyTsukuba, IbarakiJapan
  2. 2.National Institute for Materials PhysicsBucharest-MagureleRomania
  3. 3.CREST JSTKawaguchiJapan
  4. 4.Tokyo University of ScienceNodaJapan
  5. 5.Institute for Materials ResearchTohoku UniversityAoba-kuJapan

Personalised recommendations