Journal of Superconductivity

, Volume 17, Issue 6, pp 749–753 | Cite as

Possible Superconductivity in Ba-Rich Pr123

  • H. Khosroabadi
  • M. Modarreszadeh
  • P. Taheri
  • M. Akhavan


Polycrystalline (Pr1−xBa x )Ba2Cu3O7−δ samples with 0.0≤ x ≤ 0.6 are prepared by the standard solid state reaction technique. X-ray diffraction and resistivity measurements are performed. For x≤ 0.3, the 123 phase is formed, but for x > 0.3, due to the solubility limit, the 123 phase is not the dominant phase. The normalized resistivity increases with the increase of Ba doping to about x = 0.08, and then decreases in the 123 phase up to x = 0.3. The existence of an extremum in the resistivity is explained as the competition between scattering by impurities and increase of the number of carriers by Ba doping. For x > 0.3, due to a large increase in the non-123 phase formation, the resistivity increases drastically. The normalized resistivity results suggest possible observation of superconductivity in Pr123 system by Ba doping. It also indicates that the reported superconductivity in Pr123 could be as the result of extra Ba concentration positioning at Pr site.

HTSC superconducting Pr123 resistivity Pr/Ba mis-substitution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Xu and W. Guan, Phys. Rev. B 45, 3176 (1992).Google Scholar
  2. 2.
    V. E. Gasumyants, M. V. Elizarova, and R. Suryanarayanan, Phys. Rev. B 61, 12404 (2000).Google Scholar
  3. 3.
    C.-S. Jee, A. Kebede, D. Nicholas, J. E. Crow, T. Mihalisin, G. H. Myer, I. Perez, R. E. Salomon, and P. Schlottmann, Solid State Commun. 69, 379 (1989).Google Scholar
  4. 4.
    A. Kebede, C. S. Jee, J. Schwegler, J. E. Crow, T. Mihalisin, G. H. Myer, R. E. Salomon, P. Schlottmann, M. V. Kuric, S. H. Bloom, and R. P. Guertin, Phys. Rev. B 40, 4453 (1989).Google Scholar
  5. 5.
    H.-C. I. Kao, F. C. Yu, and W. Guan, Physica C 292, 53 (1997); P. Wei, H. W. Ying, and Z. Q. Qi, Physica C 209, 400 (1993).Google Scholar
  6. 6.
    H. A. Blackstead and J. D. Dow, Phys. Rev. B 51, 11830 (1995).Google Scholar
  7. 7.
    M. Akhavan, Physica B 321, 265 (2002).Google Scholar
  8. 8.
    M. Akhavan, Phys. Stat. Sol. B 241, 1242 (2004).Google Scholar
  9. 9.
    T. Usagawa, Y. Ishimaru, J. Wen, T. Utagawa, S. Koyama, and Y. Enomoto, Jpn. J. Appl. Phys. 36, L1583 (1997).Google Scholar
  10. 10.
    Z. Zou, K. Oka, T. Ito, and Y. Nishihara, Jpn. J. Appl. Phys. 36, L18 (1997).Google Scholar
  11. 11.
    H. A. Blackstead, J. D. Dow, D. B. Chrisey, J. S. Horwitz, M. A. Black, P. J. McGinn, A. E. Klunzinger, and D. B. Pulling, Phys. Rev. B 54, 6122 (1996).Google Scholar
  12. 12.
    Z. Y. T. Ren, Y. Y. Xue, Y. Y. Sun, and C. W. Chu, Physica C 213, 224 (1993).Google Scholar
  13. 13.
    Y. F. Xiong, Y. S. Yao, L. F. Xu, F. Wu, D. Jin, and Z. X. Zhao, Solid State Commun. 107, 509 (1998).Google Scholar
  14. 14.
    M. Muroi and R. Street, Physica C 314, 172 (1999).Google Scholar
  15. 15.
    Z. Tomkowicz, A. Szytuta, and K. Wojciechowski, Supercond. Sci. Technol. 5, 373 (1992).Google Scholar
  16. 16.
    H. D. Yang, I. P. Hong, S. Chatterjee, P. Nachimuthu, J. M. Chen, and J.-Y. Lin, Physica C 341–348, 411 (2000).Google Scholar
  17. 17.
    F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).CrossRefGoogle Scholar
  18. 18.
    Y. S. Yao, Y. F. Xiong, D. Jin, J. W. Li, F. Wu, J. L. Luo, and Z. X. Zhao, Physica C 282–287, 49 (1997).Google Scholar
  19. 19.
    D. J. Scalapino, Phys. Rep. 250, 329 (1995).Google Scholar
  20. 20.
    C. C. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969 (2000).Google Scholar
  21. 21.
    A. Damascelli, Z. Hussain, and Z. X. Shen, Rev. Mod. Phys. 75, 473 (2003).CrossRefGoogle Scholar
  22. 22.
    M. R. Mohammadizadeh and M. Akhavan, Eur. Phys. J. B 33, 381 (2003).Google Scholar
  23. 23.
    M. R. Mohammadizadeh and M. Akhavan, Phys. Rev. B 68, 104516 (2003).Google Scholar
  24. 24.
    M. W. Pieper, F. Wienkhorst, and T. Wolf, Cond-mat/9803336.Google Scholar
  25. 25.
    J. L. Peng, P. Klavins, R. N. Shelton, H. B. Radousky, P. A. Hahn, and L. Bernardez, Phys. Rev. B 40, 4517 (1989).Google Scholar
  26. 26.
    E. Dagatto, Rev. Mod. Phys. 66, 763 (1994).CrossRefGoogle Scholar
  27. 27.
    J. Ye, Z. Zou, A. Matsushita, K. Oka, Y. Nishihara, and T. Matsumoto, Phys. Rev. B 58, R619 (1998).Google Scholar
  28. 28.
    Z. Yamani and M. Akhavan, Supercond. Sci. Technol. 10, 427 (1997).Google Scholar
  29. 29.
    Y. Xu, S. S. Ata-Allah, M. G. Berger, and O. Gluck, Phys. Rev. B 53, 15245 (1996).Google Scholar
  30. 30.
    S. Sadewasser, J. S. Schilling, A. P. Paulikas, and B. W. Veal, Phys. Rev. B 61, 741 (2000).Google Scholar
  31. 31.
    J. Ye, S. Sadewasser, J. S. Schilling, Z. Zou, A. Matsushita, and T. Matsumoto, Physica C 328, 111 (1999).Google Scholar
  32. 32.
    J. G. Lin, C. Y. Huang, and J. C. Ho, Physica C 341–348, 625 (2000).Google Scholar
  33. 33.
    J. J. Neumeier, M. B. Maple, and M. S. Torikachvili, Physica C 156, 574 (1988).Google Scholar
  34. 34.
    V. N. Narozhnyi and S.-L. Drechsler, Phys. Rev. Lett. 82, 461 (1999).Google Scholar
  35. 35.
    Z. Zou and Y. Nishihara, Phys. Rev. Lett. 82, 462 (1999).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • H. Khosroabadi
    • 1
  • M. Modarreszadeh
    • 1
  • P. Taheri
    • 1
  • M. Akhavan
    • 1
  1. 1.Magnet Research Laboratory (MRL), Department of PhysicsSharif University of TechnologyTehranIran

Personalised recommendations