Journal of Structural Chemistry

, Volume 51, Supplement 1, pp 132–136 | Cite as

Synthesis and structural study of the ordered germanium nanorod arrays

  • R. G. Valeev
  • D. V. Surnin
  • A. N. Beltyukov
  • V. M. Vetoshkin
  • V. V. Kriventsov
  • Ya. V. Zubavichus
  • N. A. Mezentsev
  • A. A. Eliseev


A new approach to synthesis of the ordered germanium nanorod arrays using thermal sputtering on the matrices of porous alumina with the ordered channel arrangement is presented. The synthesized filamentary nanostructures were examined by scanning electron microscopy (SEM), EXAFS and XANES spectroscopy. Data on nanorod geometry in arrays, parameters of the local atomic structure such as interatomic distances and coordination numbers for initial samples and those annealed at 450°C in the argon atmosphere, and data on changes in the electronic states near the absorption K-edge were acquired. A comparison was made with the data of EXAFS studies of a continuous Ge film synthesized on a smooth surface of non-porous Al2O3.


porous Al2O3 filamentary Ge nanostructures Ge films scanning electron microscopy XANES spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Hofmeister and T. Junghanns, J. Non-Cryst. Solids, 192/193, 550 (1995).CrossRefGoogle Scholar
  2. 2.
    R. G. Valeev, V. M. Vetoshkin, and D. V. Surnin, Khim. Fiz. Mezoskop., 11, 204 (2009).Google Scholar
  3. 3.
    L. L. Araujo, P. Kluth, G. de M. Azevedo, and M. C. Ridgway, Phys. Rev. B, 74, 184102 (2006).CrossRefGoogle Scholar
  4. 4.
    E. Kurtz, J. Shen, M. Schmidt, et al., Thin Solid Films, 367, 68 (2000).CrossRefGoogle Scholar
  5. 5.
    S. Lee, J. L. Merz, and J. K. Furdyna, J. Crystal Growth, 184/185, 228 (1998).Google Scholar
  6. 6.
    M.-C. Jeong, B.-Y. Oh, M.-H. Ham, and J.-M. Myoung, Appl. Phys. Lett., 88, 202105 (2006).CrossRefGoogle Scholar
  7. 7.
    J. Bao, M. A. Zimmler, F. Capasso, et al., Nano Lett., 6, 1719 (2006).CrossRefGoogle Scholar
  8. 8.
    D.-K. Hwang, S.-H. Kang, J.-H. Lim, et al., Appl. Phys. Lett., 86, 222101 (2005).CrossRefGoogle Scholar
  9. 9.
    Y. R. Ryu, T. S. Lee, J. A. Lubguban, et al., Appl. Phys. Lett., 87, 153504 (2005).CrossRefGoogle Scholar
  10. 10.
    H. Masuda and M. Satoh, Jpn. J. Appl. Phys. 2, 35, L126 (1996).CrossRefGoogle Scholar
  11. 11.
    S. Shingubara, O. Okino, Y. Sayama, et al., Jpn. J. Appl. Phys. 1, 36, 7791 (1997).CrossRefGoogle Scholar
  12. 12.
    R. G. Valeev, P. N. Krylov, and E. A. Romanov, Poverkhnost’. Rentgen. Sinkhrotron. Neitron. Issled., No. 1, 41 (2007).Google Scholar
  13. 13.
    D. I. Kochubey, EXAFS Spectroscopy in Catalysis [in Russian], Nauka, Novosibirsk (1992).Google Scholar
  14. 14.
    K. P. Klementiev, J. Phys. D: Appl. Phys., 34, 209 (2001).CrossRefGoogle Scholar
  15. 15.
    K. V. Klementiev, Code VIPER for Windows (freeware:
  16. 16.
    S. I. Zabinsky, J. J. Rehr, A. Ankudinov, et al., Phys. Rev. B, 52, 2995 (1995).CrossRefGoogle Scholar
  17. 17.
    A. V. Ryazhkin, R. G. Valeev, A. N. Deev, et al., Poverkhnost’. Rentgen. Sinkhrotron. Neitron. Issled., No. 11, 99 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • R. G. Valeev
    • 1
    • 2
  • D. V. Surnin
    • 1
  • A. N. Beltyukov
    • 1
    • 2
  • V. M. Vetoshkin
    • 2
  • V. V. Kriventsov
    • 3
  • Ya. V. Zubavichus
    • 4
  • N. A. Mezentsev
    • 5
  • A. A. Eliseev
    • 6
  1. 1.Institute of Physics and Technology, Uralian DivisionRussian Academy of SciencesIzhevskRussia
  2. 2.Udmurt State UniversityIzhevskRussia
  3. 3.G. K. Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  4. 4.Russian Research Center “Kurchatov Institute,”MoscowRussia
  5. 5.G. I. Budker Institute of Nuclear Physics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  6. 6.Department of Materials ScienceM. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations