Journal of Structural Chemistry

, Volume 51, Supplement 1, pp 116–124 | Cite as

Possibilities of thermoluminescence method for estimating the molecular packing in near-surface layers of polymers

  • D. V. Lebedev
  • E. N. Vlasova
  • E. M. Ivan’kova
  • A. A. Kalachev
  • V. A. Marikhin
  • L. P. Myasnikova
  • A. V. Naschekin
  • E. I. Radovanova


The effect of crystallization conditions on the relaxation properties of ultra-thin surface layers in the meltgrown ultra-high molecular weight polyethylene samples was studied using a novel Nanoluminograph device. The device can record thermoluminescence generated upon heating the sample preactivated by high-frequency low-temperature low-power glow-discharge plasma. The glow curves were analyzed, and activation energy of thermoluminescence for the observed glow maxima was calculated. The effect of crystallization conditions on the formation of a lamellar structure on the surface of ultra-high molecular weight polyethylene was examined. The possibility of structural characterization of disordered interlamellar regions using thermoluminescence data is discussed. The estimated activation energy of thermoluminescence was used to calculate the apparent dimensions of kinetic units of motion in the region of β transition, which are supposed to characterize the cooperativeness in the motion of molecular segments.


ultra-high molecular weight polyethylene thermoluminescence relaxation transitions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Kalachev, N. M. Blashenkov, Yu. P. Ivanov, et al., RF Patent No. 2112650 (2003).Google Scholar
  2. 2.
    A. A. Kalachev, N. M. Blashenkov, et al., Izmer. Tekhn., No. 8, 28 (2005).Google Scholar
  3. 3.
    F. Daniels, Ch. Boyd, and D. Saunders, Usp. Phys., 51, No. 10, 271 (1953).Google Scholar
  4. 4.
    Ch. B. Lushchik, Dokl. Akad. Nauk SSSR, 101, No. 4, 641 (1955).Google Scholar
  5. 5.
    V. G. Nikolsky and N. Ya. Buben, Dokl. Akad. Nauk SSSR, 134, No. 1, 134 (1960).Google Scholar
  6. 6.
    V. G. Nikolsky, V. A. Tochin, and N. Ya. Buben, Fiz. Tverd. Tela, 5, No. 5, 2248 (1963).Google Scholar
  7. 7.
    R. H. Partridge, J. Pol. Sci. Part A, 3, No. 8, 2817 (1965).Google Scholar
  8. 8.
    I. A. Bousted and A. Charlesby, Proc. Roy. Soc. Lond. A, 316, No. 1525, 291 (1970).CrossRefGoogle Scholar
  9. 9.
    L. Zlatkevich, Radiothermoluminescence and Transitions in Polymers, Springer-Verlag, New York (1989).Google Scholar
  10. 10.
    I. V. Kuleshov and V. G. Nikolsky, Radiothermoluminescence of Polymers [in Russian], Khimiya, Leningrad (1991).Google Scholar
  11. 11.
    V. G. Nikolsky and N. Ya. Buben, Vysokomol. Soed. A, 4, No. 6, 922 (1962).Google Scholar
  12. 12.
    V. A. Aulov, F. F. Sukhov, N. A. Slovokhotova, and V. A. Kargin, Vysokomol. Soed. A, 14, No. 4, 757 (1970).Google Scholar
  13. 13.
    A. V. Vannikov, V. K. Matveev, V. P. Sichkar, et al., Radiation Effects in Polymers Electric Properties [in Russian], Nauka, Moscow (1982).Google Scholar
  14. 14.
    V. G. Nikolsky and G.I. Burkov, Khim. Vysok. Energ., 5, No. 5, 416 (1971).Google Scholar
  15. 15.
    A. Markiewicz and R.J. Fleming, J. Phys. D: Appl. Phys., 21, No. 2, 349 (1988).CrossRefGoogle Scholar
  16. 16.
    L. A. Osintseva, L. Yu. Zlatkevich, et al., Vysokomol. Soed., 16, No. 2, 340 (1974).Google Scholar
  17. 17.
    V. A. Aulov, Yu. A. Zubov, et al., Dokl. Akad. Nauk SSSR, 222, No. 1, 136 (1975).Google Scholar
  18. 18.
    V. A. Vonsyatsky and E. P. Mamunya, Vysokomol. Soed., 13, No. 9, 2164 (1971).Google Scholar
  19. 19.
    V. A. Vonsyatsky and G. Ya. Boyarsky, Radiothermoluminescence of Polymers, In: New Methods for Investigation of Polymers [in Russian], Naukova Dumka, Kiev (1975), pp. 169–191.Google Scholar
  20. 20.
    V. G. Nikolsky, V. N. Vasilets, E. S. Kuyumdzhi, et al., USSR Authorship Certificate No. 807779.Google Scholar
  21. 21.
    A. A. Kalachev, S. Yu. Lobanov, T. L. Lebedeva, and N. A. Plate, Appl. Surface Sci., 70/71, 295 (1993).CrossRefGoogle Scholar
  22. 22.
    A. N. Ponomarev and V. N. Vasilets, Khim. Vysok. Energ., 15, No. 1, 77 (1981).Google Scholar
  23. 23.
    A. A. Kalachev, T. A. Klushina, A. M. Shapiro, et al., Vysokomol. Soed., 29, No. 1, 179 (1987).Google Scholar
  24. 24.
    B. Wunderlich, Macromolecular Physics: Crystal Structure, Morphology and Defects, Academic Press, New York (1973).Google Scholar
  25. 25.
    V. A. Bernshtein, V. M. Egorov, V. A. Marikhin, and L. P. Myasnikova, Vysokomol. Soed., A, 27, No. 4, 771 (1985).Google Scholar
  26. 26.
    V. M. Egorov, V. V. Zhizhenkov, V. A. Marikhin, et al., Vysokomol Soed., A, 25, No. 4, 693 (1983).Google Scholar
  27. 27.
    R. J. Fleming, J. Thermal Anal., 36, No. 1, 331 (1990).CrossRefGoogle Scholar
  28. 28.
    V. N. Tsvetkov, S. Ya. Frenkel, and V. E. Éskin, Structure of Macromolecules in Solutions [in Russian], Khimiya, Moscow (1964).Google Scholar
  29. 29.
    G. M. Bartenev, R. M. Aliguliev, and D. M. Khiteeva, Vysokomol. Soed., A, 23, No. 9, 2003 (1981).Google Scholar
  30. 30.
    Yu. M. Boiko and A. Ya. Goldman, Mekh. Kompozit. Mater., No. 1, 24 (1990).Google Scholar
  31. 31.
    M. Meunier and N. Quirke, J. Chem. Phys., 113, No. 1, 369 (2000).CrossRefGoogle Scholar
  32. 32.
    V. A. Bernshtein and V. M. Egorov, Differential Scanning Calorimetry in Physicochemistry of Polymers [in Russian], Khimiya, Leningrad (1990).Google Scholar
  33. 33.
    J. M. O’Reilly, J. Appl. Phys., 48, No. 10, 4043 (1977).CrossRefGoogle Scholar
  34. 34.
    V. A. Aulov and M. A. Shcherbina, Vysokomol. Soed., A, 46, No. 6, 1005 (2004).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • D. V. Lebedev
    • 1
  • E. N. Vlasova
    • 2
  • E. M. Ivan’kova
    • 1
  • A. A. Kalachev
    • 3
  • V. A. Marikhin
    • 1
  • L. P. Myasnikova
    • 1
  • A. V. Naschekin
    • 1
  • E. I. Radovanova
    • 1
  1. 1.A. F. Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia
  3. 3.PlasmaChem GmbHBerlinGermany

Personalised recommendations