Advertisement

Journal of Structural Chemistry

, Volume 51, Issue 6, pp 1052–1063 | Cite as

A study of the temperature effect on the IR spectra of crystalline amino acids, dipeptids, and polyamino acids. VI. L-alanine and DL-alanine

  • V. S. Minkov
  • Yu. A. Chesalov
  • E. V. Boldyreva
Article

Abstract

The results of IR and single crystal X-ray diffraction studies on the dynamics of molecular groups and structural changes in L-alanine and DL-alanine (NH 3 + -CH(CH3)-COO) with temperature variation are given. An analysis of changes in the 4000–600 cm−1 frequency range of the IR spectra with temperature variation reveals the occurrence of the anomaly for the ∼974 cm−1 band in DL-alanine, which is similar to the anomaly for the 955 cm-1 band, previously described for L-alanine. The X-ray diffraction data for L and DL-alanine show that no dramatic changes in the unit cell parameters, conformations of amino acid molecules themselves, and hydrogen bond lengths occur with temperature variation, which would indicate the structural phase transition. Changes in the IR spectra of L-alanine and DL-alanine with temperature variation are compared to the changes in the vibrational spectra of other amino acids on cooling.

Keywords

alanine amino acids optical isomers IR spectroscopy X-ray diffraction hydrogen bonds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Iitaka, Acta Crystallogr., 14, 1 (1960).CrossRefGoogle Scholar
  2. 2.
    Y. Iitaka, Acta Crystallogr., 13, 35 (1660).CrossRefGoogle Scholar
  3. 3.
    V. V. Lemanov, S. N. Popov, and G. A. Pankova, Solid State Phys., 44, No. 10, 1840 (2002).CrossRefGoogle Scholar
  4. 4.
    K. E. Riechkoff and W. L. Peticolas, Science, 147, 610 (1965).CrossRefGoogle Scholar
  5. 5.
    L. Misoguti, V. S. Bagnato, S. C. Zilio, et al., Opt. Mater., 6, No. 3, 147 (1996).CrossRefGoogle Scholar
  6. 6.
    E. V. Boldyreva, in: Models, Mysteries, and Magic of Molecules, J. C. A. Boeyens and J. F. Ogilvie (eds.), Springer Verlag (2007), pp. 169–194.Google Scholar
  7. 7.
    Yu. A. Chesalov, G. B. Chernobai, and E. V. Boldyreva, J. Struct. Chem., 49, No. 4, 627–638 (2008).CrossRefGoogle Scholar
  8. 8.
    B. A. Kolesov and E. V. Boldyreva, J. Phys. Chem., 111, 14387 (2007).Google Scholar
  9. 9.
    V. S. Minkov, Yu. A. Chesalov, and E. V. Boldyreva, J. Struct. Chem., 49, No. 6, 1022–1034 (2008).CrossRefGoogle Scholar
  10. 10.
    V. S. Minkov, A. S. Krylov, E. V. Boldyreva, et al., J. Phys. Chem. B, 112, 8851 (2008).CrossRefGoogle Scholar
  11. 11.
    V. S. Minkov, B. A. Kolesov, E. V. Boldyreva, et al., J. Phys. Chem. B, 112, 12827 (2008).CrossRefGoogle Scholar
  12. 12.
    V. S. Minkov, N. A. Tumanov, B. A. Kolesov, et al., J. Phys. Chem. B, 113, No. 15, 5262 (2009).CrossRefGoogle Scholar
  13. 13.
    I. E. Paukov, Yu. A. Kovalevskaya, and E. V. Boldyreva, J. Therm. Analys. Calorim., 93, 423 (2007).CrossRefGoogle Scholar
  14. 14.
    I. E. Paukov, Yu. A. Kovalevskaya, and E. V. Boldyreva, J. Therm. Analys. Calorim., 100, 295 (2010).CrossRefGoogle Scholar
  15. 15.
    E. N. Kolesnik, S. V. Goryainov, and E. V. Boldyreva, Dokl. Akad. Nauk Chem., 404, 169–172 (2005).Google Scholar
  16. 16.
    E. V. Boldyreva, E. N. Kolesnik, T. N. Drebushchak, et al., Z. Krist., 220, 58 (2005).CrossRefGoogle Scholar
  17. 17.
    T. N. Drebushchak, H. Sowa, Yu. V. Seryotkin, et al., Acta Cryst. E, 62, o4052 (2006).CrossRefGoogle Scholar
  18. 18.
    V. S. Minkov, S. V. Goryainov, E. V. Boldyreva, et al., J. Raman Spectr., DOI: 10.1002/jrs.2624 (2009).Google Scholar
  19. 19.
    J. Bandekar, L. Genzel, F. Kremer, et al., Spectrochim. Acta A, 39, 357 (1983).CrossRefGoogle Scholar
  20. 20.
    M. Rozenberg, S. Shoham, I. Reva, et al., Spectrochim. Acta A, 59, 3253 (2003).CrossRefGoogle Scholar
  21. 21.
    C. H. Wang and R. D. Storms, J. Chem. Phys., 55, 3291 (1971).CrossRefGoogle Scholar
  22. 22.
    A. F. Vik, Yu. I. Yuzyuk, M. Barthes, et al., J. Raman Spectr., 36, 749 (2005).CrossRefGoogle Scholar
  23. 23.
    B. A. Kolesov and E. V. Boldyreva, J. Raman Spectr., 41, 670–677 (2009).CrossRefGoogle Scholar
  24. 24.
    T. Kosic, R. J. Cline, and D. D. Dlott, J. Chem. Phys., 241, 1138 (1984).Google Scholar
  25. 25.
    A. Micu, D. Durand, M. Quilichini, et al., J. Phys. Chem., 99, 5645 (1995).CrossRefGoogle Scholar
  26. 26.
    H. N. Bordallo, M. Barthes, and J. Eckert, Physica B, 241, 1138 (1998).CrossRefGoogle Scholar
  27. 27.
    M. S. Lehman, T. F. Koetzle, and W. C. Hamilton, J. Am. Chem. Soc., 94, 2657 (1972).CrossRefGoogle Scholar
  28. 28.
    R. Destro, R. E. Marsh, and R. Bianchi, J. Phys. Chem., 92, 966 (1988).CrossRefGoogle Scholar
  29. 29.
    W. Wang, F. Yi, Y. Ni, et al., J. Biol. Phys., 26, 51 (2000).CrossRefGoogle Scholar
  30. 30.
    M. Barthes, H. N. Bordallo, F. Denoyer, et al., Eur. Phys. J. B, 37, 375 (2004).CrossRefGoogle Scholar
  31. 31.
    J. A. Lima, P. T. C. Freire, F. E. A. Melo, et al., J. Raman Spectr., 41, No. 7, 808 (2010).Google Scholar
  32. 32.
    M. S. Nandhini, R. V. Krishnakumar, and S. Natarajan, Acta Crystallogr. C, 57, 614 (2001).CrossRefGoogle Scholar
  33. 33.
    T. J. Kistenmacher, G. A. Rand, and R. E. Marsh, Acta Crystallogr. B, 30, 2573 (1974).CrossRefGoogle Scholar
  34. 34.
    K. A. Kerr and J. P. Ashmore, Acta Crystallogr. B, 29, 2124 (1973).CrossRefGoogle Scholar
  35. 35.
    M. Barthes, A. F. Vik, A. Spire, et al., J. Phys. Chem. A, 106, 5230 (2002).CrossRefGoogle Scholar
  36. 36.
    G. B. Chernobai, Yu. A. Chesalov, E. B. Burgina, et al., J. Struct. Chem., 48, No. 2, 332–339 (2007).CrossRefGoogle Scholar
  37. 37.
    L. J. Bellamy, Infrared Spectra of Complex Molecules, Methuen, London (1958).Google Scholar
  38. 38.
    S. Jarmelo, I. Reva, P. R. Carey, et al., Vibration. Spectr., 43, 395 (2007).CrossRefGoogle Scholar
  39. 39.
    K Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds: Theory and Applications in Inorganic Chemistry, Wiley, New York (1963).Google Scholar
  40. 40.
    M. Kakihana, T. Nagumo, M. Okamoto, and H. Kakihana, J. Phys. Chem., 91, 6128 (1987).CrossRefGoogle Scholar
  41. 41.
    Yu. A. Chesalov, G. B. Chernobai, and E. V. Boldyreva, J. Struct. Chem., 49, No. 6, 1012–1021 (2008).CrossRefGoogle Scholar
  42. 42.
    S. J. Forss, Raman Spectr., 12, No. 3, 266 (1982).CrossRefGoogle Scholar
  43. 43.
    A. J. D. Moreno, P. T. C. Freire, F. E. A. Melo, et al., J. Raman Spectr., 35, 236 (2004).CrossRefGoogle Scholar
  44. 44.
    C. Murli, S. Thomas, S. Venkateswaran, and S. M. Sharma, Physica B, 364, 233 (2005).CrossRefGoogle Scholar
  45. 45.
    C. Murli, S. M. Sharma, S. Karmakar, et al., Physica B, 339, 23 (2003).CrossRefGoogle Scholar
  46. 46.
    C. Murli, R. Vasanthi, and S. M. Sharma, Chem. Phys., 331, 77 (2006).CrossRefGoogle Scholar
  47. 47.
    P. T. C. Freire, F. E. A. Melo, J. Mendes Filho, et al., Vibrat. Spectr., 45, No. 2, 99 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. S. Minkov
    • 1
  • Yu. A. Chesalov
    • 1
    • 2
  • E. V. Boldyreva
    • 1
    • 3
  1. 1.Research and Educational Center “Molecular Design and Ecologically Safe Technologies,”Novosibirsk State UniversityNovosibirskRussia
  2. 2.G. K. Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  3. 3.Institute of Solid State Chemistry and Mechanochemistry, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations