Journal of Structural Chemistry

, Volume 51, Issue 6, pp 1024–1033 | Cite as

A study of hydrogen bonds in p-substituted calix[4]-and calix[6]arenes by ab initio and electron density functional methods

  • A. N. Novikov
  • Yu. E. Shapiro


RHF/3-21G and B3LYP/3-21G methods are used to calculate the hydrogen bond energies in calix[4]-, calix[6]-, p-fluorocalix[4]-, p-fluorocalix[6]-, p-chlorocalix[4]-, p-chlorocalix[6]-, p-bromocalix[4]-, pbromocalix[6]-, p-iodocalix[4]-, p-iodocalix[6]-arenes and a number of other p-substituted calix[4]- and calix[6]arenes (R = Me, OMe, NO2, Ac, NH2, CN, N 2 + ). The calculations along with the structural data give evidence of the cooperative effect of hydrogen bonding. Multiple correlation (p ≥ 0.9) between the pairs of Hammett substituent constants and the calculated values of hydrogen bond energies in the corresponding p-substituted calixarenes is found. It is predicted that in the presence of weak bases and in aprotic solvents as well as in the gas phase, the nucleophilic substitution reaction involving p-halogen calix[6]arenes should proceed through diastereomeric transition states.


p-substituted calixarene p-halogenocalix[4]arene p-halogenocalix[6]arene hydrogen bond Hartree-Fock method electron density functional method Hammett constants multiple correlation Grootenhuis et al. method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Lhoták and S. Shinkai, J. Phys. Org. Chem., 10, No. 5, 273–285 (1997).CrossRefGoogle Scholar
  2. 2.
    L. Frkanec, A. Visnjevac, B. Kojic-Prodic, and M. Zinic, Chem. Eur. J., 6, No. 3, 442–453 (2000).CrossRefGoogle Scholar
  3. 3.
    N. D. Sokolov (ed.), in: Hydrogen Bond [in Russian], Nauka, Moscow (1981).Google Scholar
  4. 4.
    D. M. Rudkevich, Chem. Eur. J., 6, No. 15, 2679–2686 (2000).CrossRefGoogle Scholar
  5. 5.
    P. D. J. Grootenhuis, P. A. Kollman, L. C. Groenen, et al., J. Am. Chem. Soc., 112, No. 11, 4165–4176 (1990).CrossRefGoogle Scholar
  6. 6.
    A. N. Novikov, V. A. Bacherikov, Yu. E. Shapiro, and A. I. Gren, J. Struct. Chem., 47, No. 6, 1003–1015 (2006).CrossRefGoogle Scholar
  7. 7.
    W. P. Van Hoorn, M. G. H. Morshuis, F. C. J. M. van Veggel, and D. N. Reinhoudt, J. Org. Chem., 61, No. 20, 7180–7184 (1996).CrossRefGoogle Scholar
  8. 8.
    A. A. Granovsky, FIREFLY (former PC GAMESS), version 7.1.G., MGU, Russia (2007–2009), Scholar
  9. 9.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem., 14, No. 11, 1347–1363 (1993).CrossRefGoogle Scholar
  10. 10.
    A. N. Novikov, V. A. Bacherikov, and A. I. Gren, J. Struct. Chem., 42, No. 6, 906–913 (2001).CrossRefGoogle Scholar
  11. 11.
    N. Iki, N. Morohashi, T. Suzuki, et al., Tetrahedron Lett., 41, No. 15, 2587–2590 (2000).CrossRefGoogle Scholar
  12. 12.
    K. Ebert, H. Ederer, and T. L. Isenhour, Computer Applications in Chemistry. An Introduction, for PC Users, VCH Verlagsgesellschaft, Weinheim, New York (1989).Google Scholar
  13. 13.
    J. Murrell, S. Kettle, and J. Tedder, Valence Theory, Wiley, London (1966).Google Scholar
  14. 14.
    J. March, Organic Chemistry (3rd ed.), Wiley, New York (1985).Google Scholar
  15. 15.
    I. Morao and I. H. Hillier, Tetrahedron Lett., 42, No. 27, 4429–4431 (2001).CrossRefGoogle Scholar
  16. 16.
    C. G. Swain and E. C. Lupton, J. Am. Chem. Soc., 90, No. 16, 4328–4337 (1968).CrossRefGoogle Scholar
  17. 17.
    L. Sobczyk, S. J. Grabowski, and T. M. Krygowski, Chem. Rev., 105, No. 10, 3513–3560 (2005).CrossRefGoogle Scholar
  18. 18.
    M. Nogradi, Stereochemistry: Basic Concepts and Applications, Pergamon Press, New York (1980).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.I. I. Mechnikov Odessa National UniversityOdessaUkraine

Personalised recommendations