Journal of Structural Chemistry

, Volume 51, Issue 5, pp 909–915 | Cite as

Crystal structure and infrared spectroscopy of MCl2·2CONH3 (M = Cu, Mn)

  • A. G. Shtukenberg
  • L. A. P’yankova
  • Yu. O. Punin


Crystals of MCl2·2CONH3 (M = Cu2+, Mn2+) are synthesized from low-temperature water-formamide solutions and studied by crystal optical, single crystal X-ray diffraction, and infrared spectroscopy methods. The crystal structures of CuCl2·2CONH3 and MnCl2·2CONH3 are solved by direct methods and refined in the P1triclinic space group, R1= 0.043 and 0.038 for 501 and 686 reflections with F 0ÃΣ(F0) respectively. Unit cell parameters for Cu and Mn salts are: a = 3.705(1) Å and 3.685(1) Å, b = 7.049(2) Å and 7.136(2) Å, c = 7.375(2) Å and 7.779(2) Å, 6h =113.57(3)² and 117.17(2)², β = 96.17(3)² and 95.35(2)², γ = 94.85(3)² and 92.23(2)² respectively, Z= 1. In the studied crystal structures, MCl4O2 octahedra share Cl-Cl edges and form chains along the [100] direction. This direction corresponds to a morphological elongation of the obtained crystals and orientation of the maximum refractive index. The FT infrared spectra obtained in a range from 4000 cm−1 to 300 cm−1 are very close to the spectrum of liquid formamide, but exhibit better resolution of absorption bands.


syntaxy formamide single crystal X-ray diffraction analysis infrared spectroscopy Cu and Mn complexes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. D. Franke, Yu. O. Punin, and L. A. P’yankova, Cryst. Rep., 52, No. 2, 349 (2007).CrossRefGoogle Scholar
  2. 2.
    V. D. Franke, Yu. O. Punin, and N. V. Platonova, Vestnik SPbGU, Ser. 7, No. 2, 16 (2003).Google Scholar
  3. 3.
    L. A. P’yankova, Yu. O. Punin, V. D. Franke, et al., Cryst. Rep., 54, No. 4, 697 (2009).CrossRefGoogle Scholar
  4. 4.
    I. A. Zamilatskov, Coordination Compounds of Zinc and Cadmium Iodides with Amides [in Russian], Diss. … Cand. Chem. Sci., MGATKhT, Moscow (2007).Google Scholar
  5. 5.
    G. M. Sheldrick, SHELX97, Univ. Göttingen, Germany (1998).Google Scholar
  6. 6.
    J. E. Callanan and N. O. Smith, Advances in X-Ray Analysis, 9, 159 (1966).Google Scholar
  7. 7.
    E. V. Savinkina, I. A. Zamilatskov, N. E. Kuz’mina, and K. K. Palkina, 11th Intern. Symp. Inorganic Ring Systems, Program and Abstracts, Oulu (2006), p. 146.Google Scholar
  8. 8.
    S. Brownstein, N. F. Han, E. J. Gabe, et al., Z. Kristallogr., 189, 13 (1989).CrossRefGoogle Scholar
  9. 9.
    B. Morosin and E. J. Graeber, J. Chem. Phys., 42, 898 (1965).CrossRefGoogle Scholar
  10. 10.
    L. J. Bellamy, The Infrared Spectra of Complex Molecules, Wiley, New York (1962).Google Scholar
  11. 11.
    V.L. Furer and T. A. Panteleeva, Izv. KGASU, No. 1 (3), 149 (2005).Google Scholar
  12. 12.
    M. Zamama and M. Knidiri, Spectrochim. Acta, A56, 1139 (2000).Google Scholar
  13. 13.
    K. Nakanishi, Infrared Adsorption Spectroscopy, Holden-day, San-Francisco (1962).Google Scholar
  14. 14.
  15. 15.
    K. Nakamoto, in: Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed., Wiley, New York (1986).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. G. Shtukenberg
    • 1
    • 2
  • L. A. P’yankova
    • 2
  • Yu. O. Punin
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.CJSC “Scientific Instruments,”St. PetersburgRussia

Personalised recommendations