Skip to main content
Log in

Prediction of water-to-polydimethylsiloxane partition coefficient for some organic compounds using QSPR approaches

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A Quantitative Structure — Property Relationship (QSPR) model based on Genetic Algorithm (GA), Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) techniques was developed for the prediction of water-to-polydimethylsiloxane partition coefficients (log K PDMS—water) of 139 organic compounds. A suitable set of molecular descriptors was calculated and important descriptors were selected by genetic algorithm and stepwise multiple regression. These descriptors were: Minimum Atomic Orbital Electronic Population (P fufu), Kier Shape Index (order 3) (3K), Polarity Parameter / Square Distance (PP), and Complementary Information Content (order 2) (2CIC). In order to find a better way to depict the nonlinear nature of the relationships, these descriptors were used as inputs for a generated ANN. The root mean square errors for the neural network calculated log K PDMS—water of training, test, and validation sets were 0.116, 0.179, and 0.183, respectively, which are smaller than those obtained by MLR model (0.422, 0.425, and 0.480, respectively). The results obtained showed the ability of developed artificial neural network to predict water-to-polydimethylsiloxane partition coefficients of various organic compounds. Also, the results revealed the superiority of the artificial neural network over the multiple linear regression model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Tanford, The Hydrophobic Effect. Formation of Micelles, Biological Membranes, 2nd ed., Wiley-Interscience, New York (1980).

    Google Scholar 

  2. T. Braumann, J. Chromatogr. A, 373, 191 (1986).

    Article  CAS  Google Scholar 

  3. R. P. Belardi and J. Pawliszyn, Water Pollut. Res. J. Can., 24, 179 (1989).

    CAS  Google Scholar 

  4. J. Pawliszyn, Solid Phase Microextraction: Theory, Practice, Wiley, New York (1997).

    Google Scholar 

  5. N. De Coensel, K. Desmet, T. Gorecki, and P. Sandra, J. Chromatogr. A, 1150, 183 (2007).

    Article  Google Scholar 

  6. Z. Y. Yang, D. Greenstein, E. Y. Zeng, and K. A. Maruya, J. Chromatogr. A, 1148, 23 (2007).

    Article  CAS  Google Scholar 

  7. J. H. Kwon, T. Wuethrich, P. Mayer, and B. I. Escher, Anal. Chem., 79, 6816 (2007).

    Article  CAS  Google Scholar 

  8. V. A. Isidorov and V. T. Vinogorova, J. Chromatogr. A, 1077, 195 (2005).

    Article  CAS  Google Scholar 

  9. E. Y. Zeng, D. Tsukada, J. A. Noblet, and J. Peng, J. Chromatogr. A, 1066, 165 (2005).

    Article  CAS  Google Scholar 

  10. Z. A. Makrodimitri, R. Dohrn, and I. G. Economou, Macromolecules, 40, 1720 (2007).

    Article  Google Scholar 

  11. G. Klopman, C. Ding, and O. T. Macina, J. Chem. Inf. Comput. Sci., 37, 569 (1997).

    CAS  Google Scholar 

  12. W. Lu, Y. Chen, M. Liu, et al., Chemosphere, 69, 469 (2007).

    Article  CAS  Google Scholar 

  13. T. Puzyn and J. Falandysz, Phys. Chem. Ref. Data, 36, 203 (2007).

    Article  CAS  Google Scholar 

  14. G. Ohlenbusch and F. H. Frimmel, Chemosphere, 45, 323 (2001).

    Article  CAS  Google Scholar 

  15. H. Metivier-Pignon, C. Faur, and P. Le Cloirec, Chemosphere, 66, 887 (2007).

    Article  CAS  Google Scholar 

  16. L. Sprunger, A. Proctor, W. E. Jr. Acree, and M. H. Abraham, J. Cromatogr. A, 1175, 162 (2007).

    Article  CAS  Google Scholar 

  17. L. Sprunger, J. Gibbs, W. E. Jr. Acree, and M. H. Abraham, Fluid Phase Equilibria, 273, 78 (2008).

    Article  CAS  Google Scholar 

  18. A. Hierleman, E. T. Zellers, and A. J. Ricco, Anal. Chem., 73, 3458 (2001).

    Article  Google Scholar 

  19. J. M. Vegas and P. J. Zufiria, Neural Networks, 17, 233 (2004).

    Article  Google Scholar 

  20. R. C. Schweitzer and J. B. Morris, Anal. Chem. Acta, 384, 285 (1999).

    Article  CAS  Google Scholar 

  21. C.S. Tong and K. C. Cheng, Chemometrics, Intelligent Laboratory Systems, 49, 135 (1999).

    Article  CAS  Google Scholar 

  22. H. Golmohammadi and M. H. Fatemi, Electrophoresis, 26, 3438 (2005).

    Article  CAS  Google Scholar 

  23. E. Baher, M. H. Fatemi, E. Konoz, and H. Golmohammadi, Microchim. Acta, 158, 117 (2007).

    Article  CAS  Google Scholar 

  24. E. Konoz and H. Golmohammadi, Anal. Chem. Acta, 619, 157 (2008).

    Article  CAS  Google Scholar 

  25. H. Golmohammadi, J. Comput. Chem., 30, 2455 (2009).

    Article  CAS  Google Scholar 

  26. H. Golmohammadi, E. Konoz, and Z. Dashtbozorgi, Anal. Chem., 25, 1137 (2009).

    CAS  Google Scholar 

  27. G. Ohlenbusch and F. H. Frimmel, Chemosphere, 45, 323 (2001).

    Article  CAS  Google Scholar 

  28. R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim (2000).

    Book  Google Scholar 

  29. M. H. Fatemi, M. Jalali-Heravi, and E. Konuze, Anal. Chem. Acta, 486, 101 (2003).

    Article  CAS  Google Scholar 

  30. L. B. Kier and L. H. Hall, Molecular Connectivity in Structure-Activity Analysis, RSP-Wiley, Chichester, UK (1986).

    Google Scholar 

  31. E. V. Kostantinova, J. Chem. Inf. Comp. Sci., 36, 54 (1997).

    Google Scholar 

  32. G. Rucker and C. Rucker, J. Chem. Inf. Comp. Sci., 33, 683 (1993).

    Google Scholar 

  33. J. Galvez, R. Garcia, M. T. Salabert, and R. Soler, J. Chem. Inf. Comp. Sci., 34, 520 (1994).

    CAS  Google Scholar 

  34. P. Broto, G. Moreau, and C. Vandicke, Eur. J. Med. Chem., 19, 66 (1984).

    CAS  Google Scholar 

  35. Hyperchem for Windows, Release 4, Autodesk, Sansalito, CA (1995).

  36. J. J. P. Stewart, Semiempirical Molecular Orbital Program; QCPE, 445, 1983; Version 6 (1990).

  37. A. R. Katritzky, V. S. Labadov, and M. Carelson, CODESSA Training Manual, University of Florida, Gainesville (1995).

    Google Scholar 

  38. A. R. Katritzky, V. S. Labadov, and M. Carelson, CODESSA Version 1 Reference Manual, Univ. Florida, Gainesville, Florida (1994).

    Google Scholar 

  39. R. Leardi, R. Boggia, and M. Terrile, J. Chemometr., 6, 267 (1992).

    Article  CAS  Google Scholar 

  40. R. Leardi and A. L. Gonzalez, Chemometr. Intell. Lab. Syst., 41, 195 (1998).

    Article  CAS  Google Scholar 

  41. L. Chambers, Practical Handbook of Genetic Algorithms, Lewis Publishing (1995).

  42. D. B. Hibbert, Chemometr. Intell. Lab. Syst., 19, 277 (1993).

    Article  CAS  Google Scholar 

  43. MATLAB 7.0, The Mathworks Inc., Natick, MA, USA, http://www.mathworks.com.

  44. T. B. Blank and S. T. Brown, Anal. Chem., 65, 3081 (1993).

    Article  CAS  Google Scholar 

  45. J. Zupan and J. Gasteiger, Neural Network in Chemistry, Drug Design., Wiley-VCH, Weinheim (1999).

    Google Scholar 

  46. SPSS/PC, Statistical Package for IBMPC, Quiad Software, Ontario (1986).

  47. T. M. Beal, H. B. Hagan, and M. Demuth, Neural Network Design; PWS, Boston (1996).

    Google Scholar 

  48. J. Zupan and J. Gasteiger, Neural Networks for Chemists: an Introduction, VCH, Weinheim (1993).

    Google Scholar 

  49. T. B. Blank and S. T. Brown, Anal. Chem., 65, 3081 (1993).

    Article  CAS  Google Scholar 

  50. M. Jalali-Heravi and M. H. Fatemi, J. Chromatogr. A, 915, 177 (2001).

    Article  CAS  Google Scholar 

  51. A. Golbraikh and A. Tropsha, J. Mol. Graphics Model, 20, 269 (2002).

    Article  CAS  Google Scholar 

  52. P. P. Roy and K. Roy, QSAR Comb. Sci., 27, 302 (2008).

    Article  CAS  Google Scholar 

  53. L. B. Kier, Quant. Struct.-Act. Relat., 4, 109 (1985).

    Article  CAS  Google Scholar 

  54. L. B. Kier, in: Computational Chemical Graph Theory, D. H. Rouvray (ed.), Nova Science Publishers, New York (1990).

    Google Scholar 

  55. K. Osmialowski, J. Halkiewicz, A. Radecki, and R. Kaliszan, J. Chromatogr., 346, 53 (1985).

    Article  CAS  Google Scholar 

  56. S. C. Basak, D. K. Harriss, and V. R. Magnuson, J. Pharm. Sci., 73, 429 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Golmohammadi.

Additional information

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 51, No. 5, pp. 870–882, September–October, 2010

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golmohammadi, H., Dashtbozorgi, Z. Prediction of water-to-polydimethylsiloxane partition coefficient for some organic compounds using QSPR approaches. J Struct Chem 51, 833–846 (2010). https://doi.org/10.1007/s10947-010-0128-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-010-0128-6

Keywords

Navigation