Advertisement

Journal of Structural Chemistry

, Volume 51, Issue 4, pp 737–743 | Cite as

Atomic Defects on the Surface of Quasi Two-Dimensional Layered Titanium Dichalcogenides: Stm Experiment and Quantum Chemical Simulation

  • A. S. Razinkin
  • A. N. Enyashin
  • T. V. Kuznetsova
  • A. N. Titov
  • M. V. Kuznetsov
  • A. L. Ivanovskii
Article

Abstract

The atomic surface structure of layered dichalcogenide 1T-TiSe2 is studied by scanning tunneling microscopy (STM) at room temperature. In STM images, the ordered structures in the form of 6 ×6 ×6 triangles of Se atoms extending for 0.3 ±0.20 Å above the crystal surface are observed. The effect of a series of different atomic structural defects on the surface topology of titanium disulphide is modeled on the example of isostructural and isoelectronic 1T-TiS2 system using the DFTB method. It is determined that a good agreement with the STM experiment is showed by the model of local 1T-TiS2 packing defects, where the coordination of titanium atoms changes from the octahedral to the prismatic one. For these systems, the calculation results of the electronic structure and defect formation energy are also presented.

Key words

titanium dichalcogenides atomic surface defects STM microscopy quantum chemical simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. M. Julien, Mater. Sci. Engin., R40, No. 2, 47–102 (2003).Google Scholar
  2. 2.
    V. V. Ivanovskaya, G. Seifert, and A. L. Ivanovskii, Semicond., 39, No. 9, 1058–1065 (2005).CrossRefGoogle Scholar
  3. 3.
    A. N. Enyashin and A. L. Ivanovskii, Inorgan. Mater., 41, No. 10, 1118–1123 (2005).CrossRefGoogle Scholar
  4. 4.
    A. N. Enyashin, S. Gemming, and G. Seifert, Eur. Phys. J. ST, 149, No. 1, 103–125 (2007).Google Scholar
  5. 5.
    G. Van Bakel, J. De Hosson, and T. Hibma, Appl. Phys. Lett., 56, No. 24, 2402–2404 (1990).CrossRefGoogle Scholar
  6. 6.
    G. Van Bakel, and J. De Hosson, Phys. Rev., B46, No. 4, 2001–2007 (1992).Google Scholar
  7. 7.
    M. H. Whangbo, J. Ren, S. N. Magonov, et al., Surface Sci., 326, No. 3, 311–326 (1995).CrossRefGoogle Scholar
  8. 8.
    M. H. Whangbo, J. Ren, E. Canadell, et al., J. Am. Chem. Soc., 115, No. 9, 3760–3765 (1993).CrossRefGoogle Scholar
  9. 9.
    A. N. Titov, Electronic Effects in Thermodynamics of Intercalation Materials with Strong Electron-Lattice Interaction, Diss. … Dr. of Phys.-Math. Sc., Institute of Metal Physics, Ural Division of the RAN, Ekaterinburg (2005).Google Scholar
  10. 10.
    G. Seifert, J. Phys. Chem. A, 111, No. 26, 5609–5613 (2007).CrossRefGoogle Scholar
  11. 11.
    S. Sharma, T. Nautiyal, G. S. Singh, et al., Phys. Rev., B59, No. 23, 14833–14836 (1999).Google Scholar
  12. 12.
    Z. Y. Wu, G. Ouvrard, P. Moreau, et al., ibid., B55, No. 15, 9508–9513 (1997).Google Scholar
  13. 13.
    C. M. Fang, R. A. de Groot, and C. Haas, ibid., B56, No. 8, 4455–4463.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. S. Razinkin
    • 1
  • A. N. Enyashin
    • 1
  • T. V. Kuznetsova
    • 2
  • A. N. Titov
    • 2
  • M. V. Kuznetsov
    • 1
  • A. L. Ivanovskii
    • 1
  1. 1.Institute of Solid State Chemistry, Ural DivisionRussian Academy of SciencesEkaterinburgRussia
  2. 2.Institute of Metal Physics, Ural DivisionRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations