Advertisement

Journal of Structural Chemistry

, Volume 51, Issue 2, pp 335–365 | Cite as

Spin crossover — An unusual chemical equilibrium

  • A. B. Koudriavtsev
  • W. Linert
Article

Abstract

The nature and theoretical models of spin crossover equilibrium between high-spin and low-spin forms of transition metal complexes are reviewed. Spin crossover compounds are promising materials for information storage and display devices. In the solid state spin crossover is accompanied by several phenomena related to phase transitions. A critical analysis of theoretical models proposed for the explanation of these phenomena is given. The paper mainly focuses on two models that provide for adequate descriptions of the majority of experimental data, viz. the model of the Ising-like Hamiltonian and the molecular statistical model. Descriptions of spin crossover yielded by these two models are formally similar but not identical and they are based on fundamentally different concepts of molecular interactions and ordering, the latter being the origin of the two-step spin crossover. The Ising-like Hamiltonian model approaches spin crossover from the point of view of properties of lattices whereas the molecular statistical model explains this phenomenon starting from molecules. The latter approach provides for the elucidation of the molecular nature of cooperative phenomena observed in spin crossover which is important for developing the synthetic strategy of promising spin crossover compounds.

Keywords

spin crossover theoretical models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Nihei, T. Shiga, Y. Maeda, and H. Oshio, Coord. Chem. Revs. 25, 2606 (2007).CrossRefGoogle Scholar
  2. 2.
    O. Sato, J. Tao, and Y.-Zh. Zhang, Angew. Chem Int. Ed., 46, 2152 (2007).CrossRefGoogle Scholar
  3. 3.
    M. A. Halcrow, Polyhedron, 26, 3523 (2007).CrossRefGoogle Scholar
  4. 4.
    I. Krivokapic, M. Zerara, M. L. Daku, et al., Coord. Chem. Revs., 251, 364 (2007).CrossRefGoogle Scholar
  5. 5.
    A. B. Gaspar, M. C. Munoz, and J.-A. Real, J. Mater. Chem. 16, 2522 (2006).CrossRefGoogle Scholar
  6. 6.
    J.-F. Letard, ibid., 16, 2550 (2006).CrossRefGoogle Scholar
  7. 7. a)
    V. I. Guetlich and H. A. Goodwin (eds.), in: Spin Crossover in Transition Metal Compounds., Top. Curr. Chem. 233, 1–324 (2004)Google Scholar
  8. 7. b)
    V. I. Guetlich and H. A. Goodwin (eds.), in: Spin Crossover in Transition Metal Compounds. V. II, Top. Curr. Chem., 234, 1–276 (2004)Google Scholar
  9. 7. c)
    V. I. Guetlich and H. A. Goodwin (eds.), in: Spin Crossover in Transition Metal Compounds. V. III, Top. Curr. Chem., 235, 1–249 (2004).Google Scholar
  10. 8.
    J.-A. Real, A. B. Gaspar, V. Niel, and M. C. Munoz, Coord. Chem. Revs., 236, 121 (2003).CrossRefGoogle Scholar
  11. 9.
    M. Sorai, J. Chem. Thermod., 34, 1207 (2002).CrossRefGoogle Scholar
  12. 10. a)
    V. I. Ovcharenko, S. V. Fokin, G. V. Romanenkoet, et al., Mol. Phys., 100, 1107 (2002)CrossRefGoogle Scholar
  13. 10. b)
    P. Rey and V. I. Ovcharenko, in: Magnetism: Molecules to Materials, IV, J. S. Miller and M. Drillon (eds.), Wiley-VCH: New York (2003), pp. 41–63Google Scholar
  14. 10. c)
    V. I. Ovcharenko, K. Yu. Maryunina, S. V. Fokin, et al., Izv. Akad. Nauk, Ser Khim., 2305 (2004).Google Scholar
  15. 11.
    P. Weinberger and M. Grunert, Vibr. Spectr., 34(1), 175–186 (2004).CrossRefGoogle Scholar
  16. 12.
    N. Moliner, L. Salmon, L. Capes, et al., J. Phys. Chem. B, 106, No. 16, 4276–4283 (2002).CrossRefGoogle Scholar
  17. 13.
    G. Baranovic, Chem. Phys. Lett, 369, 668 (2003).CrossRefGoogle Scholar
  18. 14.
    G. Baranovic and D. Babi, Spectrochim. Acta A, 60, 1013 (2004).CrossRefGoogle Scholar
  19. 15.
    D. A. Scherlis and D. A. Estrin, Int. J. Quant. Chem., 87, 158 (2002).CrossRefGoogle Scholar
  20. 16.
    H. Paulsen and A. X. Trautwein, J. Phys. Chem. Solids, 65, 793 (2004).CrossRefGoogle Scholar
  21. 17.
    S. Decurtins, P. Guetlich, C. P. Koehler, et al., Chem. Phys. Lett. 105, No. 1, 1–4 (1984).CrossRefGoogle Scholar
  22. 18.
    P. Guetlich, A. Hauser, and H. Spiering, Angew. Chem., Int. Ed. Engl., 33, No. 20, 2024–2054 (1994); P. Guetlich, Mol. Cryst. Liq. Cryst. Sci. Techn. A, 305, 17–40 (1997).CrossRefGoogle Scholar
  23. 19.
    L. Cambi and A. Gagnasso, Att. Accad. Naz. Lincei, 13, 809 (1931); L. Cambi and L. SzegBer.Deut. Chem. Ges. 64, 259 (1931).Google Scholar
  24. 20.
    K. Madeja and E. Koenig, J. Inorg. Nucl. Chem., 25, 377–385 (1963).CrossRefGoogle Scholar
  25. 21.
    E. Koenig, Chem. Commun., No. 3, 61/62 (1966); E. Koenig and K. Madeja, Inorg.Chem., 6, 48 (1967).Google Scholar
  26. 22.
    M. Sorai and S. Seki, J. Phys. Soc. Jpn., 33, No. 2, 575 (1972).CrossRefGoogle Scholar
  27. 23.
    H. Koeppen, E. W. Mueller, C. P. Koehler, et al., Chem. Phys. Lett., 91, No. 5, 348–352 (1982).CrossRefGoogle Scholar
  28. 24.
    M. Sorai, J. Ensling, K. M. Hasselbach, and P. Guetlich, Chem. Phys., 20, No. 2, 197–208 (1977).CrossRefGoogle Scholar
  29. 25.
    N. Hassan, A. B. Koudriavtsev, and W. Linert, Pure and Appl. Chem., 80, No. 6, 1281 (2008).CrossRefGoogle Scholar
  30. 26.
    W. Linert and A. B. Kudryavtsev, Coord. Chem. Revs., 190–192, 405–445 (1999).CrossRefGoogle Scholar
  31. 27.
    Wu Chi-Cheng, J. Jung, and D. N. Hendrickson, Inorg. Chem., 36, No. 23, 5339 (1997).CrossRefGoogle Scholar
  32. 28.
    J. R. Dilworth, S. D. Howe, and M. B. Hursthouse, J. Chem. Soc. Dalton Trans., No. 24, 3553 (1994).Google Scholar
  33. 29.
    D. M. Halepoto, D. G. L. Holt, L. F. Larkworthy, et al., J. Chem. Soc. Chem. Commun., 322/323 (1989).Google Scholar
  34. 30.
    Sh. Hayami, S. Miyazaki, M. Yamamoto, et al., Bull. Chem Soc. Jpn., 79, 442 (2006).CrossRefGoogle Scholar
  35. 31.
    A. B. Koudriavtsev, A. F. Stassen, J. G. Haasnoot, et al., Phys. Chem. Chem. Phys., 5, 3666–3675 (2003).CrossRefGoogle Scholar
  36. 32.
    Keisaku Nakano, Satoshi Kawata, Ko Yoneda, et al., Chem. Commun., 2892/2893 (2004).Google Scholar
  37. 33.
    A. Absmeier, M. Bartel, C. Carbonera, et al., Chem. Europ. J., 12, No. 8, 2235–2243 (2006).CrossRefGoogle Scholar
  38. 34.
    O. Kahn, J. Krober, and C. Jay, Adv. Mater., 4, No. 11, 718–728 (1992).CrossRefGoogle Scholar
  39. 35.
    J. A. Real, M. C. Munoz, J. Faus, and X. Solans, Inorg. Chem., 36, 3008–3013 (1997).CrossRefGoogle Scholar
  40. 36.
    T. Tayagaki, A. Galet, G. Molnar, et al., J. Phys. Chem. B, 109, 14859 (2005).CrossRefGoogle Scholar
  41. 37.
    S. Dorbes, L. Valade, J.-A. Real, and C. Faulmann, Chem. Commun. 69–71 (2005).Google Scholar
  42. 38.
    S. Brooker, D. J. de Geest, R. J. Kelly, et al., J. Chem. Soc., Dalton Trans., 2080 (2002).Google Scholar
  43. 39.
    A. B. Gaspar, V. Ksenofontov, J. A. Real, and P. Guetlich, Chem. Phys. Lett., 373, 385–391 (2003).CrossRefGoogle Scholar
  44. 40.
    J. Wajnflasz, J. Phys. Status Solidi, 40, 537 (1970).CrossRefGoogle Scholar
  45. 41.
    R. Bari and J. Sivardiere, Phys. Rev. B., 5, 4466 (1972).CrossRefGoogle Scholar
  46. 42.
    V. V. Zelentsov, G. L. Lapushkin, S. S. Sobolev, and V. I. Shipilov, Dokl. Akad. Nauk SSSR, 289, 393 (1986).Google Scholar
  47. 43.
    A. Bousseksou, J. Nasser, J. Linares, et al., J. Phys. I. France, 2, 1381 (1992).CrossRefGoogle Scholar
  48. 44.
    A. Bousseksou, H. Constant-Machado, and F. Varret, ibid., 5, 747 (1995).CrossRefGoogle Scholar
  49. 45.
    C. P. Slichter and H. G. Drickamer, J. Chem. Phys., 56, 2142 (1972).CrossRefGoogle Scholar
  50. 46.
    M. Sorai and S. Seki, J. Phys. Chem. Solids, 35, No. 4, 555–570 (1974).CrossRefGoogle Scholar
  51. 47.
    S. Ohnishi and S. Sugano, J. Phys. C, 14, No. 1, 39–55 (1981).CrossRefGoogle Scholar
  52. 48.
    H. Spiering, E. Meissner, H. Koeppen, et al., Chem. Phys., 68, Nos. 1/2, 65–71 (1982).CrossRefGoogle Scholar
  53. 49.
    P. Adler, L. Wiehl, E. Meissner, et al., J. Phys. Chem. Solids, 48, No. 6, 517–525 (1987).CrossRefGoogle Scholar
  54. 50.
    R. Jakobi, H. Spiering, and P. Gutlich, ibid., 53, No. 2, 267–275 (1992).CrossRefGoogle Scholar
  55. 51.
    T. Luty and C. J. Eckhardt, J. Am. Chem. Soc., 117, 2441–2452 (1995).CrossRefGoogle Scholar
  56. 52.
    N. Sasaki and T. Kambara, J. Phys. Soc. Jpn., 51, No. 5, 1571–1578 (1982).CrossRefGoogle Scholar
  57. 53.
    T. Kohlhaas, H. Spiering, and P. Gutlich, Z. Phys. B, 102, No. 4, 455–459 (1997).CrossRefGoogle Scholar
  58. 54.
    K. Boukheddaden, S. Miyashita, and M. Nishino, Physical Rev. B, 75, 094112 (2007).CrossRefGoogle Scholar
  59. 55.
    J.-A. Real, H. Bolvin, A. Bousseksou, et al., J. Am. Chem. Soc., 114, 4658 (1992).CrossRefGoogle Scholar
  60. 56.
    A. B. Koudriavtsev, A. F. Stassen, J. G. Haasnoot, et al., Phys. Chem. Chem. Phys., 5, 3676–3683 (2003).CrossRefGoogle Scholar
  61. 57.
    D. Chernyshov, H.-B. Bürgi, M. Hostettler, and K. W. Törnroos, Phys. Rev. B., 70, 0941161-1–0941161-8 (2004).CrossRefGoogle Scholar
  62. 58.
    A. B. Koudriavtsev, Chem. Phys., 241, 109 (1999).CrossRefGoogle Scholar
  63. 59.
    A. B. Koudriavtsev and W. Linert, Monatsh. Chem., 137, 15–33 (2006).CrossRefGoogle Scholar
  64. 60.
    A. B. Koudriavtsev and W. Linert, ibid., 137, 35–53.Google Scholar
  65. 61.
    A. B. Koudriavtsev and W. Linert, ibid., 433–447.Google Scholar
  66. 62.
    A. B. Koudriavtsev, R. F. Jameson, and W. Linert, ibid., 137, 1283–1313 (2006).CrossRefGoogle Scholar
  67. 63.
    A. B. Koudriavtsev, R. F. Jameson, and W. Linert, “The Law of Mass Action,” Springer, Berlin-Hedelberg (2001).Google Scholar
  68. 64.
    R. Zimmermann and E. Koenig, J.Phys.Chem. Solids, 38, 779 (1977).CrossRefGoogle Scholar
  69. 65.
    V. A. Varnek, J Struct. Chem., 35, No. 6, 834–841 (1994); V. A. Varnek and L. G. Lavrenova, ibid. 35, No. 3, 422-424 (1994).CrossRefGoogle Scholar
  70. 66.
    G. Molnar, A. Bousseksou, A. Zwick, and J. J. MacGarvey, Chem. Phys. Lett., 367, 593 (2003).CrossRefGoogle Scholar
  71. 67.
    Y. Ogava, S. Koshihara, K. Koshino, et al., Phys. Rev. Lett., 84, 3181 (2000).CrossRefGoogle Scholar
  72. 68.
    R. H. Fowler and E. A. Guggenheim, ’Statistical Thermodynamics’, Cambridge University Press (1939).Google Scholar
  73. 69.
    E. A. Moelvin-Hughes, Physical Chemistry, Pergamon Press, London (1961)..Google Scholar
  74. 70. a)
    V. S. Gorskii, Z. Phys., 49, 619 (1928)CrossRefGoogle Scholar
  75. 70. b)
    V. S. Gorskii, ibid., 50, 64 (1928).CrossRefGoogle Scholar
  76. 71. a)
    W. L. Bragg and E. J. Williams, Proc. Roy. Soc. A, 145, 699 (1934)CrossRefGoogle Scholar
  77. 71. b)
    ibid., 151, 540 (1935).CrossRefGoogle Scholar
  78. 72.
    D. Chernyshov, M. Hostettler, K. W. Törnroos, and H.-B. Bürgi, Angew. Chem. Int. Ed., 42, 3825 (2003).CrossRefGoogle Scholar
  79. 73.
    A. B. Koudriavtsev and W. Linert, J. Struct. Chem., 49, No. 6, 1111–1114 (2008).CrossRefGoogle Scholar
  80. 74.
    K. W. Tornroos, M. Hostettler, D. Chernyshov, et al., Chemistry-A Eur. J., 12,No. 24, 6207 (2006).CrossRefGoogle Scholar
  81. 75. a)
    M, Nishino K. Boukheddaden, S. Miyashita, and F. Varret, Polyhedron, 24, 2005 (2005)CrossRefGoogle Scholar
  82. 75. b)
    K. Boukheddaden, J. Linares, R. Tanasa, and C. Chong, J. Phys. Cond. Matter., 19, 106201 (2007).CrossRefGoogle Scholar
  83. 76. a)
    M. A. Krivoglaz and A. A. Smirnov, Theory of Ordering Alloys [in Russian], Fizmatgiz, Moscow (1958)Google Scholar
  84. 76. b)
    Yu. K. Tovbin, Theory of Physicochemical Processes at the Gas-Solid Interface [in Russian], Nauka, Moscow (1990).Google Scholar
  85. 77.
    A. Yu. Zakharov, Lattice Models of Statistical Physics [in Russian], Izd. NGU, Vel. Novgorod (2006).Google Scholar
  86. 78. a)
    R. Boca, M. Boca, L. Dlhan, et al., Inorg Chem., 40, 3025 (2001)CrossRefGoogle Scholar
  87. 79. b)
    R. Boca, M. Boca, and W. Linert, Monatsh. Chem., 134, 199 (2003).Google Scholar
  88. 79.
    Yuji Shigeyoshi, Motoko Akita, Katsuya Inoue, et al., Angew. Chem. Int. Ed., 44, 4899 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Analytical CentreD. I. Mendeleev University of Chemical Technology of RussiaMoscowRussia
  2. 2.Institute of Applied Synthetic ChemistryVienna University of TechnologyViennaAustria

Personalised recommendations