Journal of Structural Chemistry

, Volume 50, Supplement 1, pp 78–85 | Cite as

Stabilizing role of lithium in structures of complex oxide compounds as an instrument for crystal chemical design

  • S. F. Solodovnikov
  • E. G. Khaikina
  • Z. A. Solodovnikova


Crystal chemical features of some complex oxide lithium-containing compounds, in particular, triple molybdates, are considered to reveal the structure-forming significance of lithium. Its role is actually reduced to the realization of structures with a simpler composition through the introduction and heterovalent substitution. Specific stabilization ways can be very diverse owing to the high adaptability of lithium atoms in the structure. They can reside in the same crystallographic positions together with alkali metals (including potassium), medium-size, and even larger two- and three-charged cations and also to occupy the cavities. Such an adaptability and a low charge of the Li+ ion with its appropriate distribution in the structure allow the elimination of imbalance in cation charges and sizes of their coordination polyhedra. They also provide the filling of available vacancies, which produces a significant stabilizing effect. The stabilization of the structures with other cations or their combinations is exemplified. Attention is drawn to the relation between the structural and thermal stabilization. It is concluded that the crystal chemical stabilizing features of lithium and other cations can be used as an instrument for the design of novel compounds and materials.


lithium complex oxides triple molybdates structural stabilization crystal chemical design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Blistanov, Crystals of Quantum and Nonlinear Optics [in Russian], MISIS, Moscow (2000).Google Scholar
  2. 2.
    C. Jousseaume, A. Kahn-Harari, D. Vivien, et al., J. Mater. Chem., 12, 1525 (2002).CrossRefGoogle Scholar
  3. 3.
    A. Bensalah, Y. Guyot, M. Ito, et al., Optical Mater., 26, 375 (2004).CrossRefGoogle Scholar
  4. 4.
    E. V. Makhonina, V. S. Pervov, and V. S. Dubasova, Chemistry Advances, 73, 1075 (2004).Google Scholar
  5. 5.
    Yu. A. Pyatenko and N. M. Chernitsova, Izv. Akad. Nauk SSSR, Ser. Geol., No. 4, 67 (1990).Google Scholar
  6. 6.
    M. J. Buerger, Am. Miner., 39, 600 (1954).Google Scholar
  7. 7.
    C. T. Li, Z. Kristallogr., 138, 216 (1973).CrossRefGoogle Scholar
  8. 8.
    H. Schulz and V. Tscherry, Acat Crystallogr., B28, 2168 (1972).CrossRefGoogle Scholar
  9. 9.
    A. Manthiram and J. B. Goodenough, J. Solid State Chem., 71, 349 (1987).CrossRefGoogle Scholar
  10. 10.
    V. K. Trunov, A. A. Evdokimov, T. P. Rybakova, and T. A. Berezina, Zh. Neorg. Khim., 24, 168–171 (1979).Google Scholar
  11. 11.
    E., Lukacevic, A. Santoro, and R. S. Roth, Solid State Ionics, 18/19, Part 2, 922 (1986).CrossRefGoogle Scholar
  12. 12.
    S. C. Abrahams and J. L. BernsteiNo, J. Chem. Phys., 45, 2745 (1966).CrossRefGoogle Scholar
  13. 13.
    S. P. Sirotinkin, A. N. Pokrovskii, and L. M. Kovba, Kristallographiya, 26, 385 (1981).Google Scholar
  14. 14.
    S. P. Sirotinkin, A. N. Pokrovskii, and L. M. Kovba, Zh. Neorg. Khim., 21, 789 (1976).Google Scholar
  15. 15.
    G. Torres-Trevino, E. E. Lachowskii, and A. R. West, J. Mater. Sci. Lett., 5, 615 (1986).CrossRefGoogle Scholar
  16. 16.
    N. Krishnamachari and C. Calvo, Acta Crystallogr., B29, 2611–2613 (1973).Google Scholar
  17. 17.
    A. P. Tyutyunnik, V. G. Zubkov, L. L. Surat, and B. V. Slobodin, Zh. Neorg. Khim., 49, 610 (2004).Google Scholar
  18. 18.
    S. F. Solodovnikov, E. G. Khaikina, Z. A. Solodovnikova, et al., Dokl. Ross. Akad. Nauk, 416, 60 (2007).Google Scholar
  19. 19.
    R. F. Klevtsova, L. P. Kozeeva, and P. V. Klevtsov, Kristallografiya, 19, 89 (1974).Google Scholar
  20. 20.
    O. M. Basovich, E. G. Khaikina, S. F. Solodovnikov, and G. D. Tsyrenova, J. Solid State Chem., 178, 1580 (2005).CrossRefGoogle Scholar
  21. 21.
    D. Yu. Naumov and E. V. Boldyreva, J. Struct. Chem., 40, No. 1, 86–93 (1999).CrossRefGoogle Scholar
  22. 22.
    I.I. Kiseleva, M. I. Sirota, R. I. Ozerov, et al., Kristallografiya, 24, 1277 (1979).Google Scholar
  23. 23.
    N. M. Kozhevnikova and M. V. Mokhosoev, Triple Molybdates [in Russian], Izd-vo BGU, Ulan-Ude (2000).Google Scholar
  24. 24.
    R. F. Klevtsova, L. A. Glinskaya, V. I. Alekseev, et al., J. Struct. Chem., 34, No. 5, 789–793 (1993).CrossRefGoogle Scholar
  25. 25.
    R. F. Klevtsova, A. D. Vasiliev, L. A. Glinskaya, et al., ibid., 33, No. 3, 443–447 (1992).CrossRefGoogle Scholar
  26. 26.
    V. A. Morozov, B. I. Lazoryak, V. A. Smirnov, et al., Zh. Neorg. Khim., 46, No. 6, 977 (2001).Google Scholar
  27. 27.
    S. F. Solodovnikov, P. V. Klevtsov, L. A. Glinskaya, and R. F. Klevtsova, Kristallografiya, 32, 618 (1987).Google Scholar
  28. 28.
    M. Müller,. B. O. Hildmann, and Th. Hahn, Acta Crystallogr., C43, 184 (1987).Google Scholar
  29. 29.
    Z. A. Solodovnikova, S. F. Solodovnikov, and E. S. Zolotova, ibid., C62, 16 (2006).Google Scholar
  30. 30.
    Z. A. Solodovnikova, Phase Formation and Structure of Triple Molybdates and Related Compounds in Systems Li2MoO4-A2 +MoO4-M2+MoO4 (A+=K, Rb, Cs; M2+=Mg, Mn, Co, Ni, Zn) [in Russian]: Avtoref. Diss. Kand. Khim. Nauk, Novosibirsk (2008).Google Scholar
  31. 31.
    E.G. Khaikina, Synthesis, Characteristics of Phase Formation and Structure of Double and Triple Molybdates of Uni- and Trivalent Metals [in Russian], Avtoref. Dis. … Dokt. Khim. Nauk, Novosibirsk (2008).Google Scholar
  32. 32.
    S. C. Abrahams, J. Chem. Phys., 46, 2052 (1967).CrossRefGoogle Scholar
  33. 33.
    Z. I. Khazheeva, M. V. Mokhosoev, N. N. Smirnyagina, et al., Dokl. Akad Nauk SSSR, 284, 128 (1985).Google Scholar
  34. 34.
    F. D’Yvoire and E. Bretey, Solid State Ionics, 28–30, 1259–1264 (1988).CrossRefGoogle Scholar
  35. 35.
    N. V. Belov, Outlines on Structural Mineralogy [in Russian], Nedra, Moscow (1976).Google Scholar
  36. 36.
    N. M. Kasper, Inorg. Chem., 8, 1000 (1969).CrossRefGoogle Scholar
  37. 37.
    E. J. Cussen, and T. W. S. Yip, J. Solid State Chem., 180, 1832 (2007).CrossRefGoogle Scholar
  38. 38.
    V. Thangadurai, H. Kaack, and W. J. F. Weppner, J. Am. Ceram. Soc., 86, 437 (2003).CrossRefGoogle Scholar
  39. 39.
    E. V. Murashova, Yu. A. Velikodnyi, and V. K. Trunov, J. Struct. Chem., 29, No. 4, 648–650 (1988).CrossRefGoogle Scholar
  40. 40.
    L. P. Keller, G. J. McCarthy, and R. J. Garvey, Mater. Res. Bull., 20, 459 (1985).CrossRefGoogle Scholar
  41. 41.
    A. I. Tursina, V. A. Efremov, Yu. M. Gasanov, and V. K. Trunov, Kristallografiya, 35, 625 (1990).Google Scholar
  42. 42.
    S. F. Solodovnikov, P. V. Klevtsov, and R. F. Klevtsova, ibid., 31, 440 (1986).Google Scholar
  43. 43.
    B. I. Lazoryak, Usp. Khim., 65, 307 (1996).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • S. F. Solodovnikov
    • 1
    • 2
  • E. G. Khaikina
    • 3
    • 4
  • Z. A. Solodovnikova
    • 1
  1. 1.A. V. Nikolaev Institute of Inorganic Chemistry, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Baikal Institute of Natural Management, Siberian DivisionRussian Academy of SciencesUlan UdeRussia
  4. 4.Buryat State UniversityUlan-UdeRussia

Personalised recommendations