Journal of Structural Chemistry

, Volume 50, Issue 6, pp 1021–1028 | Cite as

The nature of the electronic states and photoelectron spectra of oxyanion crystals

  • Yu. N. Zhuravlev
  • D. V. Korabelnikov


The densities of states, atomic charges, and partial components were calculated by the B3LYP method for lithium, sodium, and potassium nitrites, nitrates, chlorates, perchlorates, sulfites, and sulfates using a localized basis of atomic orbitals and CRYSTAL06 software. The calculated densities of states N(E) are in good agreement with the experimental photoelectron spectrum (UPS). The crystallographically nonequivalent metal and oxygen atoms are in different charged states, which leads to a splitting of the N(E) bands.


nitrites nitrates sulfites sulfates chlorates perchlorates densities of states Mulliken population charged state partial charge photoelectron spectrum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Jackson and K. A. Mort, Comp. Mater. Sci., 17, 230–233 (2000).CrossRefGoogle Scholar
  2. 2.
    Yu. N. Zhuravlev and D. V. Korabelnikov, Fiz. Tverd. Tela, 51, No. 1, 65–72 (2009).Google Scholar
  3. 3.
    J. A. Connor, I. H. Hillier, and V. R. Saunders, Mol. Phys., 23, No. 1, 81–90 (1972).CrossRefGoogle Scholar
  4. 4.
    V. N. Nefedov, Yu. A. Buslaev, et al., Izv. Akad. Nauk SSSR, Ser. Fiz., 38, No. 9, 448–460 (1974).Google Scholar
  5. 5.
    A. Calabrese and R. Hayes, J. Electron. Spectrosc. Relat. Phenom., 1, No. 1, 1–16 (1975).CrossRefGoogle Scholar
  6. 6.
    T. Sasaki, R. S. Williams, J. S. Wong, et al., J. Chem. Phys., 71, 4601–4610 (1979).CrossRefGoogle Scholar
  7. 7.
    C. Bandis, L. Scuidiero, S. C. Lanford, and J. T. Dickinson, Surf. Sci., 422, 413–419 (1999).CrossRefGoogle Scholar
  8. 8.
    M. Considine, J. A. Connor, and I. H. Hillier, Inorg. Chem., 16, 1392 (1977).CrossRefGoogle Scholar
  9. 9.
    P. Ravindran, A. Delin, B. Johansson, et al., Phys. Rev. B., 59, No. 3, 1776–1785 (1999).CrossRefGoogle Scholar
  10. 10.
    M. I. McCarthy, K. A. Peterson, and W. P. Hess, J. Phys. Chem., 100, 6708–6714 (1996).CrossRefGoogle Scholar
  11. 11.
    A. B. Preobrajenski, A. S, Vinogradov S. L.Molodtsov, et al., Phys. Rev. B., 65, 1–10 (2002).CrossRefGoogle Scholar
  12. 12.
    Yu. N. Zhuravlev and A. S. Poplavnoi, J. Struct. Chem., 42, No. 6, 882–887 (2001).CrossRefGoogle Scholar
  13. 13.
    Yu. N. Zhuravlev and A. S. Poplavnoi, ibid., 44, No. 2, 187–192 (2003).CrossRefGoogle Scholar
  14. 14.
    Yu. N. Zhuravlev and I. A. Fedorov, ibid., 47, No. 2, 206–210 (2006).CrossRefGoogle Scholar
  15. 15.
    R. Dovesi, V. R. Saunders, C. Roetti, et al. CRYSTAL06 User Manual, Univ. Torino, Torino (2006), p. 258.Google Scholar
  16. 16.
  17. 17.
    J. P. Perdew, J. A. Chevary, et al., Phys. Rev. B, 46, 6671 (1992).CrossRefGoogle Scholar
  18. 18.
    A. D. Becke, J. Chem. Phys., 98, 5648 (1993).CrossRefGoogle Scholar
  19. 19.
    A. Weaver, D. W. Arnold, et al., ibid., 94, 1740 (1991).CrossRefGoogle Scholar
  20. 20.
    X.-B. Wang and L.-Sh. Wang, ibid., 113, No. 24, 10928 (2000).CrossRefGoogle Scholar
  21. 21.
    M. Karppinen, A. Kvick, S. C. Abrahams, et al., ibid., 85, No. 9, 5221–5227 (1986).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Kemerovo State UniversityKemerovoRussia

Personalised recommendations