Advertisement

Journal of Structural Chemistry

, Volume 50, Issue 5, pp 841–852 | Cite as

Study of caffeine-DNA interaction in aqueous solution by parallel Monte Carlo simulation

  • M. D. Kalugin
  • A. V. Teplukhin
Article

Abstract

Monte Carlo simulation of caffeine aqueous solutions containing a superhelical B-DNA fragment is performed using parallel computing. The binding sites of caffeine molecules with DNA were identified as well as the most probable structures of the resultant complexes. The degrees of caffeine molecule association in aqueous solutions with different concentrations were estimated and the main configuration types of molecular aggregates were revealed.

Keywords

water structure caffeine DNA computer simulation Monte Carlo parallel computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. W. Larsen, R. Jasuja, R. Hetzler, et al., Biophys. J., 70, 443 (1996).CrossRefGoogle Scholar
  2. 2.
    F. Traganos, J. Kapuscinski, and Z. Darzynkiewicz, Cancer Res., 51, 3682 (1991).Google Scholar
  3. 3.
    D. B. Davies, D. A. Veselkov, L. N. Djimant, and A. N. Veselkov, Eur. Biophys. J., 30, 354 (2001).CrossRefGoogle Scholar
  4. 4.
    M. B. Lyles and I. L. Cameron, Cell Biol. Int., 26, 145 (2002).CrossRefGoogle Scholar
  5. 5.
    A. V. Shestopalova, Hydration of Caffeine and its Interaction with the DNA-Water System: The PhD Thesis, Inst. Phys AS GSSR, Tbilisi (1987).Google Scholar
  6. 6.
    M. Falk, M. Gil, and N. Iza, Can. J. Chem., 68, 1293 (1990).CrossRefGoogle Scholar
  7. 7.
    A. V. Teplukhin, Mat. Model., 16, No. 11, 15 (2004).Google Scholar
  8. 8.
    N. A. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, et al., J. Chem. Phys., 21, 1087 (1953).CrossRefGoogle Scholar
  9. 9.
    M. Snir, S. Otto, S. Huss-Lederman, et al., MPI: The Complete Reference, MIT Press, Boston (1996).Google Scholar
  10. 10.
    V. P. Ivannikov, S. S. Gaisaryan, A. I. Avetisyan, and V. A. Padaryan, Programming, 32, No. 4, 203 (2006).Google Scholar
  11. 11.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, New York (1987).Google Scholar
  12. 12.
    G. S. Heffelfinger, Comput. Phys. Commun., 128, 219 (2000).CrossRefGoogle Scholar
  13. 13.
    V. I. Poltev, T. I. Grokhlina, and G. G. Malenkov, J. Biomol. Struct. Dyn., 2, 413 (1984).Google Scholar
  14. 14.
    D. J. Sutor, Acta Crystallogr., 11, No. 7, 453 (1958).CrossRefGoogle Scholar
  15. 15.
    A. V. Teplukhin, V. B. Zhurkin, R, Jernigan, and V. I. Poltev, Mol. Biol., 30, No. 1, pt. 2, 75–84 (1996).Google Scholar
  16. 16.
    A. V. Teplukhin, G. G. Malenkov, and V. I. Poltev, J. Biomol. Struct. Dyn., 16, 289 (1998).Google Scholar
  17. 17.
    V. I. Poltev and N. V. Shulyupina, ibid., 3, 739 (1986).Google Scholar
  18. 18.
    H. Berthod and A. Pullman, J. Chim. Phys., 62, 942 (1965).Google Scholar
  19. 19.
    L.-S. Kan, P. N. Borer, D. M. Cheng, and P. O. P. Ts’o, Biopolymers, 19, 1641 (1980).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute of System ProgrammingRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Mathematical Problems in BiologyRussian Academy of SciencesPushchinoRussia

Personalised recommendations