Journal of Structural Chemistry

, Volume 50, Issue 3, pp 403–410 | Cite as

Simulation of gas diffusion in porous layers of varying structure

  • A. V. Anikeenko
  • N. N. Medvedev
  • M. K. Kovalev
  • M. S. Melgunov


Gas diffusion in porous layers of varying structure was simulated numerically. Mesoporous mesophase material (MMM) and silica gel layers were studied. The former were a set of ordered cylinders; the latter were disordered packings of spheres. The average residence time of a molecule in a layer (return time) and dispersion of this time in relation to the layer depth were calculated. For the same porosity and specific surface of layers, the average return time is independent of the pore structure and increases with the layer depth as a linear function. This is the consequence of the general theoretical result, according to which the duration of molecule wandering in a pore depends only on the ratio of the pore volume to the section area of its windows. Dispersion of the wandering time is sensitive to the pore structure; it is slightly smaller for regular pores than for a complex pore system. The functional dependence of return time dispersion on the layer depth is the same for different layers (the cubic root of dispersion changes with the layer depth as a linear function). This work helps us to understand recent experimental data, which showed that using MMM for gas chromatographic columns increased the efficiency of the latter compared with other columns based on silicon oxide.


computer simulation random wanderings gas diffusion mesoporous mesophase materials porous layers residence time in a layer gas chromatography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. P. Karnaukhov, Adsorption. Texture of Disperse and Porous Materials [in Russian], Nauka, Novosibirsk (1999).Google Scholar
  2. 2.
    V. B. Fenelonov, Introduction to the Physical Chemistry of the Formation of Supramolecular Structures, Adsorbents, and Catalysts [in Russian], Siberian Division, Russian Academy of Sciences, Novosibirsk (2002).Google Scholar
  3. 3.
    M. Knudsen, Ann. Phys., 28, 75–130 (1909).CrossRefGoogle Scholar
  4. 4.
    W. G. Pollard and R. D. Present, Rhys. Rev., 73, No. 7, 762–774 (1948).CrossRefGoogle Scholar
  5. 5.
    J. M. Zalc, S. C. Reyes, and E. Iglesia, Chem. Eng. Sci., 59, 2947–2960 (2004).CrossRefGoogle Scholar
  6. 6.
    Yu. V. Patrushev, V. N. Sidelnikov, M. K. Kovalev, and M. S. Melgunov, Zh. Fiz. Khim., 82, No. 7, 1–4 (2008).Google Scholar
  7. 7.
    S. Blanco and R. Fournier, Europhys. Lett., 61, No. 2, 168–173 (2003).CrossRefGoogle Scholar
  8. 8.
    A. V. Anikeenko, “Modeling the diffusion of gas molecules in media with a complex pore system,” Dissertation, Novosibirsk State University (2003).Google Scholar
  9. 9.
    A. Mazzolo, Ann. Nucl. Energy, 32, 549–557 (2005).CrossRefGoogle Scholar
  10. 10.
    O. Benichou, M. Coppey, M. Moreau, et al., Europhys. Lett., 70, No. 1, 42–48 (2005).CrossRefGoogle Scholar
  11. 11.
    S. Redned, A Guide to First-Passage Processes, Cambridge University Press, New York (2001).Google Scholar
  12. 12.
    A. V. Kiselev and Y. I. Yashin, Gas Adsorption Chromatography, Plenum Press, New York (1969).Google Scholar
  13. 13.
    M. E. Davis, Nature, 417, 813–821 (2002).CrossRefGoogle Scholar
  14. 14.
    K. Lochmann, A. V. Anikeenko, A. Elsner, et al., Eur. Phys. J. B, 53, 67–76 (2006).CrossRefGoogle Scholar
  15. 15.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon, Oxford (1987).Google Scholar
  16. 16.
    K. I. Sakodynskii, V. V. Brazhnikov, S. A. Volkov, et al., Analytical Chromatography [in Russian], Khimiya, Moscow (1993).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. V. Anikeenko
    • 1
  • N. N. Medvedev
    • 1
  • M. K. Kovalev
    • 2
  • M. S. Melgunov
    • 2
  1. 1.Institute of Chemical Kinetics and Combustion, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  2. 2.G. K. Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations