Journal of Structural Chemistry

, Volume 50, Issue 2, pp 195–200 | Cite as

Ab initio quantum-chemical calculations of the energies and structures of 1,2-acetylenedithiol isomers

  • Yu. V. Frolov
  • A. V. Vashchenko
  • A. G. Mal’kina
  • B. A. Trofimov


Ab initio quantum-chemical calculations of 1,2-acetylenedithiol isomers were carried out. The MP2(full), DFT(B3PW91, MPW1PW91), G3, G3B3, and CBS-Q methods were used. According to the calculations, the most stable isomers were 1,2-dithiet, thiiranethione, and trans-1,2-dithioglyoxal. The necessity of including basis set functions with a large angular momentum in calculations was confirmed. The relatively high stability of 1,2-dithiet was attributed to the aromaticity of its four-membered ring. It was noted that the carbon-carbon bond in the three-membered rings of the cis- and trans-isomers of thiirenethiols was unusually short.


ab initio quantum-chemical calculations 1,2-acetylenedithiol 1,2-dithiet 1,2-dithioglyoxal aromaticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. L. Frolov, A. G. Mal’kina, and B. A. Trofimov, J. Struct. Chem., 46, No. 1, 28–33 (2005).CrossRefGoogle Scholar
  2. 2.
    B. A. Trofimov, A. G. Mal’kina, I. A. Dorofeev, et al., Dokl. Akad. Nauk, 214, No. 2, 204–206 (2007).Google Scholar
  3. 3.
    B. A. Trofimov, A. G. Mal’kina, I. A. Dorofeev, et al., Zh. Obshch. Khim., 77, No. 9, 1485–1492 (2007).Google Scholar
  4. 4.
    R. C. Haddon, S. R. Waserman, F. Wudl, and G. R. J. Williams, J. Am. Chem. Soc., 102, 6687–6693 (1980).CrossRefGoogle Scholar
  5. 5.
    R. Schultz, A. Schweig, K. Hartke, and J. Koster, ibid., 105, 4519–4528 (1983).CrossRefGoogle Scholar
  6. 6.
    W. Jiang-qi, M. Mohraz, E. Heilbronner, et al., Helv. Chim. Acta, 66, No. 3, 801–808 (1983).CrossRefGoogle Scholar
  7. 7.
    M. Mann and J. Fabian, Int. J. Quant. Chem., 60, 859–867 (1996).CrossRefGoogle Scholar
  8. 8.
    F. Diehl, H. Meyer, A. Schweig, et al., J. Am. Chem. Soc., 111, 7651–7653 (1989).CrossRefGoogle Scholar
  9. 9.
    V. Jonas and G. Frenking, Chem. Phys. Lett., 177, No. 2, 175–183 (1991).CrossRefGoogle Scholar
  10. 10.
    L. González, O. Mó, and M. Yáñez, ibid., 263, No. 3, 407–413 (1996).CrossRefGoogle Scholar
  11. 11.
    J. D. Goddard and G. Orlova, J. Chem. Phys., 111, No. 17, 7705–7712 (1999).CrossRefGoogle Scholar
  12. 12.
    A. Timoshkin and G. Frenking, ibid., 113, No. 19, 8430–8433 (2000).CrossRefGoogle Scholar
  13. 13.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., GAUSSIAN-03W, Revision B.01, Gaussian, Inc., Pittsburgh, PA (2003).Google Scholar
  14. 14.
    M. Rodler and A. Bauer, Chem. Phys. Lett., 114, Nos. 1–3, 575–578 (1985).CrossRefGoogle Scholar
  15. 15.
    M. Solimannejad and L. Pejov, J. Mol. Struct. (THEOCHEM), 683, Nos. 1–3, 171–174 (2004).CrossRefGoogle Scholar
  16. 16.
    Yu. L. Frolov, A. V. Knizhnik, and A. G. Mal’kina, J. Struct. Chem., 39, No. 4, 600–609 (1998).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • Yu. V. Frolov
    • 1
  • A. V. Vashchenko
    • 1
  • A. G. Mal’kina
    • 1
  • B. A. Trofimov
    • 1
  1. 1.A. E. Favorskii Institute of Chemistry, Siberian DivisionRussian Academy of SciencesIrkutskRussia

Personalised recommendations