Journal of Structural Chemistry

, Volume 50, Issue 1, pp 60–66 | Cite as

Vibrational spectroscopic and quantum chemical study of antimony(III) oxide



IR and Raman spectroscopy are used to study cubic and orthorhombic modifications of Sb2O3. Vibrational spectra are calculated in the approximation of density functional theory; the bands are assigned. Based on the assignment made, vibrational spectra of the α-Sb3O2F5 compound are analyzed.


antimony(III) oxide DFT IR Raman vibrational spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Pillep and P. Behrens, J. Phys. Chem. B, 103, No. 44, 9595–9603 (1999).CrossRefGoogle Scholar
  2. 2.
    C. Ye, G. Meng, L. Zhang, et al., Chem. Phys. Lett., 363, 34–38 (2002).CrossRefGoogle Scholar
  3. 3.
    Y. Zhang, G. Li, J. Zhang, et al., Nanotechnology, 15, 762–765 (2004).CrossRefGoogle Scholar
  4. 4.
    J. Tan, L. Shen, X. Fu, et al., Dyes and Pigments, 61, 31–38 (2004).CrossRefGoogle Scholar
  5. 5.
    Ch. Svensson, Acta Crystallogr., B30, 458–461 (1974).Google Scholar
  6. 6.
    Ch. Svensson, ibid., B31, 2016–2018 (1975).Google Scholar
  7. 7.
    I. L. Knunyants (ed.), in: Chemical Encyclopedia [in Russian], Sov. Éntsikl., Moscow (1983).Google Scholar
  8. 8.
    Yu. V. Karyakin and I. I. Angelov, Pure Chemical Compounds [in Russian], Khimiya, Moscow (1974).Google Scholar
  9. 9.
    L. Guo, Z. Wu, T. Liu, et al., Chem. Phys. Lett., No. 318, 49–52 (2000).Google Scholar
  10. 10.
    J. R. Ferraro, Low-Frequence Vibrations of Inorganic and Coordination Compounds, Plenum Press, New York (1971).Google Scholar
  11. 11.
    M. O. Guerrero-Pe rez, J. L. G. Fierro, M. A. Vicente, et al., J. Catal., 206, 339–348 (2002).CrossRefGoogle Scholar
  12. 12.
    P. J. Miller and A. Charles, Spectrochim. Acta Part A: Molecular Spectroscopy, 38, No. 5, 555–559 (1982).CrossRefGoogle Scholar
  13. 13.
    M. A. Banãres, M. O. Guerrero-Perez, J. L. G. Fierro, et al., J. Mater. Chem., 12, 3337–3342 (2002).CrossRefGoogle Scholar
  14. 14.
    C. A. Cody, L. DiCarlo, and R. K. Darlington, Inorg. Chem., 18, No. 6, 1572–1576 (1979).CrossRefGoogle Scholar
  15. 15.
    A. A. Udovenko, L. A. Zemnukhova, E. V. Kovaleva, and G. A. Fedorishcheva, Koordinats. Khim. 30, No. 8, 1–8 (2004).Google Scholar
  16. 16.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem., 14, 1347–1363 (1993)CrossRefGoogle Scholar
  17. 17.
    W. J. Stevens, H. Basch, M. Krauss, et al., Can. J. Chem., 70, 612–630 (1992).CrossRefGoogle Scholar
  18. 18.
    B. Kaiser, T. M. Bernhardt, M. Kinne, et al., J. Chem. Phys., 110, No. 3, 1437–1449 (1999).CrossRefGoogle Scholar
  19. 19.
    N. M. Laptash, E. V. Kovaleva, A. A. Mashkovskii, et al., J. Struct. Chem., 48, No. 5, 848–854 (2007).CrossRefGoogle Scholar
  20. 20.
    R. L. Davidovich, T. A. Kaidalova, T. F. Levchishina, and V.I. Sergienko, Atlas of Infrared Spectra and X-ray Data for Complex Fluorides of Metals of Groups IV and V [in Russian], Nauka, Moscow (1972).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • E. I. Voit
    • 1
  • A. E. Panasenko
    • 1
  • L. A. Zemnukhova
    • 1
  1. 1.Institute of Chemistry, Far East DivisionRussian Academy of SciencesVladivistokRussia

Personalised recommendations