Advertisement

Journal of Structural Chemistry

, Volume 49, Supplement 1, pp 54–58 | Cite as

X-ray spectroscopy of lanthanum manganites: Nature of doping holes, correlation effects, and orbital ordering

  • V. R. Galakhov
  • M. C. Falub
  • K. Kuepper
  • M. Neumann
Article

Abstract

The Mn3s X-ray photoelectron spectra of manganites were studied. It was shown that for the formal valence of manganese from 3+ to 3.3+, the doping holes are O2p in character; as the valence of manganese increases further, the Mn3d states acquire holes. For La0.7Sr0.3MnO3, the Mn3p-3d resonance spectra provided information about the occupied and unoccupied Mn3d states, and the correlation energy U = 6.7 eV was determined experimentally. An analysis of X-ray dichroism on the L absorption spectra of three-dimensional La7/8Sr1/8MnO3 showed that the cooperative Jahn Teller distortion of the orthorhombic phase at 240 K was related to (x 2z 2)/(y 2z 2) type orbital ordering.

Keywords

X-ray photoelectron spectra dichroism manganites orbital ordering correlation energy doping holes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Volger, Physica (Amsterdam), 20, 49 (1954).CrossRefGoogle Scholar
  2. 2.
    S. Jin, T. H. Tiffel, M. McCormack, et al., Science, 264, 413 (1994).CrossRefGoogle Scholar
  3. 3.
    A. P. Ramirez, J. Phys. Condens. Matter, 9, 8171 (1999).CrossRefGoogle Scholar
  4. 4.
    W. E. Pickett and D. J. Singh, Phys. Rev. B, 53, 1146 (1996).CrossRefGoogle Scholar
  5. 5.
    C. Zener, Phys. Rev., 82, 403 (1951).CrossRefGoogle Scholar
  6. 6.
    T. Saitoh, A. E. Bocquet, T. Mizokawa, et al., Phys. Rev. B, 51, 13942 (1995).CrossRefGoogle Scholar
  7. 7.
    H. L. Ju, H.-C. Sohn, and K. M. Krishnan, Phys. Rev. Lett., 79, 3230 (1997).CrossRefGoogle Scholar
  8. 8.
    J.-H. Park, C. T. Chen, S.-W. Cheong, et al., ibid., 76, 4215 (1996).CrossRefGoogle Scholar
  9. 9.
    K. Kuepper, M. C. Falub, K. C. Prince, et al., J. Phys. Chem., 109, 9354 (2005).Google Scholar
  10. 10.
    B. Dabrowski, X. Xiong, Z. Bukowski, et al., Phys. Rev. B, 60, 7006 (1999).CrossRefGoogle Scholar
  11. 11.
    G. Aljandro, M. C. G. Passeggi, D. Vega, et al., ibid., 68, 214429 (2003).CrossRefGoogle Scholar
  12. 12.
    V. R. Galakhov, M. Demeter, S. Bartkowski, et al., ibid., 65, 113102 (2002).CrossRefGoogle Scholar
  13. 13.
    M. C. Falub, M. Shi, J. Krempasky, et al., Surf. Sci., 575, 29 (2005).CrossRefGoogle Scholar
  14. 14.
    R. Zalecki, A. Kolodziejczyk, A. Kapusta, and K. Krop, J. All. Comp., 328, 175 (2001).CrossRefGoogle Scholar
  15. 15.
    Y. Endoh, K. Hirota, S. Ishihara, et al., Phys. Rev. Lett., 82, 4328 (1999).CrossRefGoogle Scholar
  16. 16.
    J. Geck, P. Wochner, D. Bruns, et al., Phys. Rev. B, 69, 104413 (2004).Google Scholar
  17. 17.
    K. Kuepper, F. Bondino, K. C. Prince, et al., J. Phys. Chem. B, 109, 15667 (2005).Google Scholar
  18. 18.
    H. J. Huang, W. B. Wu, G. Y. Guo, et al., Phys. Rev. Lett., 92, 087202 (2004).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • V. R. Galakhov
    • 1
  • M. C. Falub
    • 2
  • K. Kuepper
    • 3
  • M. Neumann
    • 4
  1. 1.Institute of Metal Physics, Ural DivisionRussian Academy of SciencesEkaterinburgRussia
  2. 2.P. Scherrer InstituteWilligenSwitzerland
  3. 3.Rossendorf Research CenterDresdenGermany
  4. 4.Osnabruck UniversityOsnabruckGermany

Personalised recommendations