Study of the temperature effect on IR spectra of crystalline amino acids, dipeptides, and polyamino acids. IV. L-cysteine and DL-cysteine

  • V. S. Min’kov
  • Yu. A. Chesalov
  • E. V. Boldyreva


A study of the IR spectra of L- and DL-cysteine is carried out in a range of frequencies from 4000 cm−1 to 600 cm−1 and temperatures from 333 K to 83 K. Changes in the spectra of L- and DL-cysteine (NH 3 + CH(CH2SH)-COO) on cooling are analyzed in comparison with the spectra of L- and DL-serine (NH 3 + CH(CH2OH)-COO) and three polymorphs of glycine (NH 3 + CH2-COO) previously studied under temperature variation. Changes in the IR spectra at variable temperatures are correlated with previously obtained diffraction data on anisotropic compression of the structure and changes in the geometric parameters of hydrogen bonds. Special attention is paid to temperature regions in which anomalies were detected by vibrational spectroscopy, X-ray diffraction, and calorimetry.


cysteine optical isomers IR spectroscopy hydrogen bonds 


  1. 1.
    S. N. Vinogradov, Int. J. Peptide Protein Res., 14, No, 4, 281 (1979).Google Scholar
  2. 2.
    C. G. Suresh and M. Vijayan, ibid., 22, No. 2, 129 (1983).Google Scholar
  3. 3.
    E. V. Boldyreva in: Models, Mysteries, and Magic of Molecules, J. C. A. Boeyens and J. F. Ogilvie (eds.), Springer (2007).Google Scholar
  4. 4.
    A. Meister, Biochemistry of Amino Acids, Academic Press, New York (1957).Google Scholar
  5. 5.
    V. V. Lemanov, S. N. Popov, and G. A. Pankova, Solid State Phys., 44, No. 10, 1840 (2002).CrossRefGoogle Scholar
  6. 6.
    K. E. Riechkoff and W. L. Peticolas, Science, 147, 610 (1965).CrossRefGoogle Scholar
  7. 7.
    L. Misoguti, V. S. Bagnato, S. C. Zilio, et al., Opt. Mater., 6, No. 3, 147 (1996).CrossRefGoogle Scholar
  8. 8.
    G. B. Chernobai, Yu. A. Chesalov, E. B. Burgina, et al., J. Struct. Chem., 48, No. 2, 332–339 (2007).CrossRefGoogle Scholar
  9. 9.
    Yu. A. Chesalov, G. B. Chernobai, and E. V. Boldyreva, ibid., 49, No. 4, 627–638 (2008).CrossRefGoogle Scholar
  10. 10.
    B. A. Kolesov and E. V. Boldyreva, J. Phys. Chem., 111, 14387–14397 (2007).CrossRefGoogle Scholar
  11. 11.
    K. A. Kerr and J. P. Ashmore, Acta Crystallogr., 29B, 2124 (1973).Google Scholar
  12. 12.
    K. A. Kerr, J. P. Ashmore, and F. Koetzle, ibid., 31B, 2022 (1975).Google Scholar
  13. 13.
    M. Wolpert and P. Hellwig, Spectrochim. Acta, A64, 987 (2006).Google Scholar
  14. 14.
    A. Pawlukojc, J. Leciejewicz, A. J. Ramirez-Cuesta, and J. Nowicka-Scheibe, ibid., 61A, 2474 (2005).CrossRefGoogle Scholar
  15. 15.
    P. Luger and M. Weber, Acta Crystallogr., 55C, 1882 (1999).Google Scholar
  16. 16.
    L. J. Bellamy, Infrared Spectra of Complex Molecules, Methuen, London (1958).Google Scholar
  17. 17.
    M. P. M. Marques, A. M. Amorin da Costa, and P. J. A. Ribeiro-Claro, Phys. Chem., 105A, 5292 (2001).Google Scholar
  18. 18.
    G. Zundel, Hydration and Intermolecular Interaction, Academic Press, New York (1969).Google Scholar
  19. 19.
    S. Jarmelo, I. Reva, P. R. Carey, and R. Fausto, Vibration. Spectr., 43, 395 (2007).CrossRefGoogle Scholar
  20. 20.
    S. A. Moggach, S. J. Clark, and S. Parsons, Acta Crystallogr., 61E, o2739 (2005).Google Scholar
  21. 21.
    K Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds: Theory and Applications in Inorganic Chemistry, Wiley, New York (1963).Google Scholar
  22. 22.
    M. Kakihana, T. Nagumo, M. Okamoto, and H. Kakihana, J. Phys. Chem., 91, 6128 (1987).CrossRefGoogle Scholar
  23. 23.
    Yu. A. Chesalov, G. B. Chernobai, and E. V. Boldyreva, J. Struct. Chem., 49, No. 6, 1012–1022 (2008).CrossRefGoogle Scholar
  24. 24.
    C. Murli, S. Thomas, S. Venkateswaran, and S. M. Sharma, Physica, 364B, 233 (2005).Google Scholar
  25. 25.
    A. J. D. Moreno, P. T. C. Freire, F. E. A. Melo, et al., J. Raman Spectroscop., 35, 236 (2004).CrossRefGoogle Scholar
  26. 26.
    C. H. Wang and R. D. Storms, J. Chem. Phys., 55, 3291 (1971).CrossRefGoogle Scholar
  27. 27.
    R. D. Wang and R. D. Storms, ibid., 5110.Google Scholar
  28. 28.
    M. Barthes, A. F. Vik, A. Spire, et al., J. Phys. Chem., A106, 5230 (2002).Google Scholar
  29. 29.
    S. Forss, Raman Spectroscop., 12, No. 3, 266 (1982).CrossRefGoogle Scholar
  30. 30.
    M. Barthes, H. N. Bordallo, F. Denoyer, et al., Eur. J. Phys., 37B, 375 (2004).Google Scholar
  31. 31.
    C. Murli, S. M. Sharma, S. Karmakar, and S. K. Sikka, Physica, 339B, 23 (2003).Google Scholar
  32. 32.
    C. Murli, S. M. Sharma, and S. M. Sikka, Chem. Phys., 331, 77 (2006).CrossRefGoogle Scholar
  33. 33.
    P. T. C. Freire, F. E. A. Melo, J. Mendes Filho, et al., Vibr. Spectroscop., 45(2), 99–102 (2007).CrossRefGoogle Scholar
  34. 34.
    H. N Bordallo., B. A. Kolesov, E. V. Boldyreva, and F. Juranyi, J. Am. Chem. Soc. (Commun.), 129(36), 10984/10985 (2007).Google Scholar
  35. 35.
    S. A. Moggach, D. R. Allan, C. A. Morrison, et al., Acta Crystallogr., B61, 58–68 (2005).Google Scholar
  36. 36.
    E. N. Kolesnik, S. V. Goryainov, and E. V. Boldyreva, Dokl. Phys. Chem., 404, 61–64 (Rus.), or 169–172 (Engl.) (2005).CrossRefGoogle Scholar
  37. 37.
    E. V. Boldyreva, H. Sowa, Yu. V. Seryotkin, et al., Chem. Phys. Lett., 429, 474–478 (2006).CrossRefGoogle Scholar
  38. 38.
    A. Dawson, D. R. Allan, S. A. Belmonte et al., Cryst. Growth Design, 5, No. 4, 1415 (2005).CrossRefGoogle Scholar
  39. 39.
    I. Weissbuch, R. Popovitz-Biro, M. Lahav, and L. Leiserowitz, Angew. Chem. Int. Ed., 11, No. 10, 3039 (2005).Google Scholar
  40. 40.
    G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, UK (1997).Google Scholar
  41. 41.
    Z. S. Derewenda, L. Lee, and U. J. Derewenda, Mol. Biol., 252, 248 (1995).CrossRefGoogle Scholar
  42. 42.
    C. B. Anfinsen, J. T. Edsall, and F. M. Richard, Advanc. Protein Chem., 86, 370 (1986).Google Scholar
  43. 43.
    I. E. Paukov, Yu. A. Kovalevskaya, V. A. Drebushchak, et al., J. Phys. Chem. B. Lett., 111(31), 9186–9188 (2007).CrossRefGoogle Scholar
  44. 44.
    I. E. Paukov, Yu. A. Kovalevskaya, and E. V. Boldyreva, J. Therm. Anal. Calorimetry, 93, No. 2, 423 (2008).CrossRefGoogle Scholar
  45. 45.
    B. A. Kolesov, E. V. Boldyreva, V. S. Minkov, et al., J. Phys. Chem. B, DOI: 10.1021/jp804/42 c.Google Scholar
  46. 46.
    I. E. Paukov, Yu. A. Kovalevskaya, and E. V. Boldyreva, J. Therm. Anal.Calorimetry, accepted (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • V. S. Min’kov
    • 1
    • 2
  • Yu. A. Chesalov
    • 1
    • 3
  • E. V. Boldyreva
    • 1
    • 2
  1. 1.Research and Educational Center “Molecular Design and Ecologically Safe Technologies,”Novosibirsk State UniversityNovosibirskRussia
  2. 2.Institute of Solid State Chemistry and Mechanochemistry, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  3. 3.G. K. Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations