Journal of Structural Chemistry

, Volume 49, Issue 2, pp 341–347 | Cite as

XPS, UPS, and STM studies of nanostructured CuO films

  • A. I. Stadnichenko
  • A. M. Sorokin
  • A. I. Boronin


A Cu1O1.7 oxide film containing a large amout of superstoichiometric oxygen was obtained by low-temperature oxidation of metallic copper in the oxygen plasma. An STM study of the film structure showed that ∼10 nm planar copper oxide nanocrystallites with particles packed parallel to the starting metal surface. In an XPS study, the spectral characteristics of the Cu2p and O1s lines indicated that particles with a CuO lattice formed (E bnd(Cu2p 3/2) = 933.3 eV and a shake-up satellite, E bnd(O1s) = 529.3 eV). The additional superstoichiometric oxygen is localized at the sites of contact of nanoparticles in the interunit space and is characterized by a state with the binding energy E bnd(O1s) = 531.2 eV. Due to the formation of a nanostructure in the films during low-temperature plasma oxidation, the resulting copper oxide has a much lower thermal stability than crystalline oxide CuO.


copper oxide oxygen surface XPS UPS STM plasma nanoparticle oxide film 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Liu and F. M. Stephanopoulos, J. Catal., 153, No. 2, 304–316 (1997).CrossRefGoogle Scholar
  2. 2.
    F. Boccuzzi, A. Chiorino, M. Manzoli, et al., Catal. Today, 75, 169–175 (2002).CrossRefGoogle Scholar
  3. 3.
    S.-P. Wang, X.-Y. Wang, X.-C. Zheng, et al., React. Kinet. Catal. Lett., 89, No. 1, 37–44 (2006).CrossRefGoogle Scholar
  4. 4.
    U. R. Pillai and S. Deevi, Appl. Catal. B: Environmental, 64, 146–151 (2006).CrossRefGoogle Scholar
  5. 5.
    T.-J. Huang and D.-H. Tsai, Catal. Lett., 87, Nos. 3/4, 173–178 (2003).CrossRefGoogle Scholar
  6. 6.
    K. Zhou, R. Wang, B. Xu, and Y. Li, Nanotechnol., 17, 3939–3943 (2006).CrossRefGoogle Scholar
  7. 7.
    A. I. Boronin, S. V. Koscheev, K. T. Murzakhmedov, et al., Appl. Surf. Sci., 165, No. 1, 9–14 (2000).CrossRefGoogle Scholar
  8. 8.
    B. Koslowski, H.-G. Boyen, C. Wilderotter, et al., Surf. Sci., 475, Nos. 1–3, 1–10 (2001).CrossRefGoogle Scholar
  9. 9.
    D. Briggs and M. P. Seah, Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Wiley, New York (1983).Google Scholar
  10. 10.
    J. Ghijsen, L. H. Tjeng, J. van Elp, et al., Phys. Rev. B, 38, No. 16, 11322–11330 (1988).CrossRefGoogle Scholar
  11. 11.
    J.-M. Mariot, V. Barnole, C. F. Hague, et al., J. Phys. B, Condens. Matter, 75, 1–9 (1989).CrossRefGoogle Scholar
  12. 12.
    C. Linsmeier and J. Wanner, Surf. Sci., 454, 305–309 (2000).CrossRefGoogle Scholar
  13. 13.
    A. I. Boronin, V. I. Avdeev, S. V. Koshcheev, et al., Kinet. Katal., 40, No. 5, 721–741 (1999).Google Scholar
  14. 14.
    G. M. Zhidomirov, V. I. Avdeev, and A. I. Boronin, in: Computational Materials Science, C. R. A. Catlow and E. A. Kotomin (eds.), NATO Science Series III: Computer and Systems Science, Vol. 187 (2003), pp. 334–355.Google Scholar
  15. 15.
    V. I. Avdeev and G. M. Zhidomirov, Surf. Sci., 492, Nos. 1/2, 137–151 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • A. I. Stadnichenko
    • 1
  • A. M. Sorokin
    • 1
  • A. I. Boronin
    • 1
    • 2
  1. 1.G. K. Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations