Skip to main content
Log in

XPS, UPS, and STM studies of nanostructured CuO films

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A Cu1O1.7 oxide film containing a large amout of superstoichiometric oxygen was obtained by low-temperature oxidation of metallic copper in the oxygen plasma. An STM study of the film structure showed that ∼10 nm planar copper oxide nanocrystallites with particles packed parallel to the starting metal surface. In an XPS study, the spectral characteristics of the Cu2p and O1s lines indicated that particles with a CuO lattice formed (E bnd(Cu2p 3/2) = 933.3 eV and a shake-up satellite, E bnd(O1s) = 529.3 eV). The additional superstoichiometric oxygen is localized at the sites of contact of nanoparticles in the interunit space and is characterized by a state with the binding energy E bnd(O1s) = 531.2 eV. Due to the formation of a nanostructure in the films during low-temperature plasma oxidation, the resulting copper oxide has a much lower thermal stability than crystalline oxide CuO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Liu and F. M. Stephanopoulos, J. Catal., 153, No. 2, 304–316 (1997).

    Article  Google Scholar 

  2. F. Boccuzzi, A. Chiorino, M. Manzoli, et al., Catal. Today, 75, 169–175 (2002).

    Article  CAS  Google Scholar 

  3. S.-P. Wang, X.-Y. Wang, X.-C. Zheng, et al., React. Kinet. Catal. Lett., 89, No. 1, 37–44 (2006).

    Article  CAS  Google Scholar 

  4. U. R. Pillai and S. Deevi, Appl. Catal. B: Environmental, 64, 146–151 (2006).

    Article  CAS  Google Scholar 

  5. T.-J. Huang and D.-H. Tsai, Catal. Lett., 87, Nos. 3/4, 173–178 (2003).

    Article  CAS  Google Scholar 

  6. K. Zhou, R. Wang, B. Xu, and Y. Li, Nanotechnol., 17, 3939–3943 (2006).

    Article  CAS  Google Scholar 

  7. A. I. Boronin, S. V. Koscheev, K. T. Murzakhmedov, et al., Appl. Surf. Sci., 165, No. 1, 9–14 (2000).

    Article  CAS  Google Scholar 

  8. B. Koslowski, H.-G. Boyen, C. Wilderotter, et al., Surf. Sci., 475, Nos. 1–3, 1–10 (2001).

    Article  CAS  Google Scholar 

  9. D. Briggs and M. P. Seah, Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Wiley, New York (1983).

    Google Scholar 

  10. J. Ghijsen, L. H. Tjeng, J. van Elp, et al., Phys. Rev. B, 38, No. 16, 11322–11330 (1988).

    Article  CAS  Google Scholar 

  11. J.-M. Mariot, V. Barnole, C. F. Hague, et al., J. Phys. B, Condens. Matter, 75, 1–9 (1989).

    Article  CAS  Google Scholar 

  12. C. Linsmeier and J. Wanner, Surf. Sci., 454, 305–309 (2000).

    Article  Google Scholar 

  13. A. I. Boronin, V. I. Avdeev, S. V. Koshcheev, et al., Kinet. Katal., 40, No. 5, 721–741 (1999).

    Google Scholar 

  14. G. M. Zhidomirov, V. I. Avdeev, and A. I. Boronin, in: Computational Materials Science, C. R. A. Catlow and E. A. Kotomin (eds.), NATO Science Series III: Computer and Systems Science, Vol. 187 (2003), pp. 334–355.

  15. V. I. Avdeev and G. M. Zhidomirov, Surf. Sci., 492, Nos. 1/2, 137–151 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Boronin.

Additional information

Original Russian Text Copyright © 2008 by A. I. Stadnichenko, A. M. Sorokin, and A. I. Boronin

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 49, No. 2, pp. 353–359, March–April, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stadnichenko, A.I., Sorokin, A.M. & Boronin, A.I. XPS, UPS, and STM studies of nanostructured CuO films. J Struct Chem 49, 341–347 (2008). https://doi.org/10.1007/s10947-008-0133-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-008-0133-1

Keywords

Navigation