Journal of Structural Chemistry

, Volume 49, Issue 4, pp 621–626 | Cite as

Theoretical study of the structure, stability, and infrared spectra of hydrogen-bonded complexes of N-nitrosodiethanolamine (NDELA) with water molecules



A theoretical study of the interaction between the N-nitrosodiethanolamine (NDELA) molecule and one to five water molecules was performed at the B3LYP level using a large polarized basis set. The calculated complexation energies (corrected for BSSE and ZPVE) of NDELA with one, two, three, four, and five water molecules are −4.62 kcal/mol, −9.83 kcal/mol, −15.29 kcal/mol, −21.60 kcal/mol, and −25.10 kcal/mol respectively at the B3LYP/6-311++G** level. In all complexes studied, there are red shifts in the vibrational frequencies of the O-Hs of NDELA and water molecules along with increases in the corresponding IR intensities.


hydrogen bond clusters nitrosamine computations B3LYP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. You, X. Fan, W. Lao, et al., Talanta, 48, 437 (1999).CrossRefGoogle Scholar
  2. 2.
    W. Zwickenpflug and E. Ritcher, J. Chromatogr. Sci., 25, 506 (1987).Google Scholar
  3. 3.
    C. P. Oliveria, M. B. A. Glória, J. F. Barbour, and R. A. Scanlan, J. Agric. Food Chem., 43, 967 (1995).CrossRefGoogle Scholar
  4. 4.
    N. P. Sen, S. W. Seaman, P. A. Baddoo, and D. Weber, J. Food Sci., 53, 731 (1988).CrossRefGoogle Scholar
  5. 5.
    R. J. Maxwell, J. W. Pensabene, and W. Fiddler, J. Chromatogr. Sci., 31, 212 (1993).Google Scholar
  6. 6.
    B. A. Tomkins and W. H. Griest, Anal. Chem., 68, 2533 (1996).CrossRefGoogle Scholar
  7. 7.
    H. D. Fine, R. Ross, D. P. Rounbehler, et al., J. Agric. Food Chem., 24, 1069 (1976).CrossRefGoogle Scholar
  8. 8.
    N. P. Sen, S. W. Seaman, and S. C. Kushwaha, J. Chromatogr., 463, 419 (1989).CrossRefGoogle Scholar
  9. 9.
    M. B. A. Glória, J. F. Barbour, and R. A. Scanlan, J. Agric. Food Chem., 45, 814 (1997).CrossRefGoogle Scholar
  10. 10.
    R. W. Stephany, J. Freudenthal, E. Egmond, et al., ibid., 24, 536 (1976).CrossRefGoogle Scholar
  11. 11.
    B. Spiegelhalder and R. Preussmann, J. Cancer Res. Clin. Oncol., 108, 160 (1984).CrossRefGoogle Scholar
  12. 12.
    V. Barone, P. Palma, and N. Sanna, Chem. Phys. Lett., 381, 451 (2003).CrossRefGoogle Scholar
  13. 13.
    Q. S. Li and W. H. Fang, ibid., 367, 637.CrossRefGoogle Scholar
  14. 14.
    D. Wang, S. Chen, and D. Chen, J. Photochem. Photobiol. A., 162, 407 (2004).CrossRefGoogle Scholar
  15. 15.
    S. Scheiner, Hydrogen Bonding, A Theoretical Perspective, Oxford University Press, Oxford (1997).Google Scholar
  16. 16.
    L. Pejov, M. Solimannejad, and V. Stefov, Chem. Phys., 323, 259 (2006).CrossRefGoogle Scholar
  17. 17.
    M. Solimannejad and S. Scheiner, Chem. Phys. Lett., 429, 38 (2006).CrossRefGoogle Scholar
  18. 18.
    M. Solimannejad and S. Scheiner, ibid., 424, 1.CrossRefGoogle Scholar
  19. 19.
    M. Solimannejad and S. Scheiner, J. Phys. Chem., A110, 5948 (2006).Google Scholar
  20. 20.
    M. Solimannejad and I. Alkorta, ibid, 10817.Google Scholar
  21. 21.
    M. Solimannejad and M. E. Alikhani, Chem. Phys. Lett., 406, 351 (2005).CrossRefGoogle Scholar
  22. 22.
    M. Solimannejad, G. Azimi, and L. Pejov, ibid., 400, 185 (2004).CrossRefGoogle Scholar
  23. 23.
    M. Solimannejad and L. Pejov, ibid., 385, 394 (2004).CrossRefGoogle Scholar
  24. 24.
    M. J. Frisch et al., Gaussian-03, Revision B02, Gaussian, Inc., Pittsburgh (2003).Google Scholar
  25. 25.
    S. F. Boys and F. Bernardi, Mol. Phys., 19, 553 (1970).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceShahid Beheshti University G.C., EvinTehranIran

Personalised recommendations