Advertisement

Journal of Structural Chemistry

, Volume 48, Supplement 1, pp S100–S110 | Cite as

Ab initio quantum-chemical study of vinylation of pyrrole and 2-phenylazopyrrole with acetylene in a KOH/DMSO system

  • V. B. Kobychev
  • N. M. Vitkovskaya
  • E. Yu. Shmidt
  • E. Yu. Senotrusova
  • B. A. Trofimov
Article

Abstract

Interaction between pyrrole and its 2-vinyl, 2-azo, and 2-phenylazo derivatives with acetylene in the gas phase and DMSO was studied using the MP2/6-311++G**//MP2/6-31G* ab initio approach and including the solvation effects within the framework of the continuum model. Possible reasons are considered for the hindered character of direct vinylation of azopyrroles with acetylene in superbasic media. The introduction of the azo group in the 2 position of the pyrrole ring leads to the increased stability of the pyrrole anion and increased acidity from pK a = 22.1 for pyrrole and pK a = 20.5 for vinylpyrrole to pK a = 16.6 and 16.4 for 2-azopyrrole and 2-phenylazopyrrole, respectively. The binding energy between the pyrrole anion and the acetylene molecule decreases concurrently. The heat of formation of the pyrrole anion adducts with acetylene changes from ΔH = 4.8 kcal/mol for pyrrole to ΔH = 22.4 kcal/mol for 2-phenylazopyrrole. For all anion adducts under study, preferable isomers are Z isomers formed by the interaction of pyrrole anions with the cis-distorted acetylene molecule, but the formation of the E isomers corresponds to a lower activation barrier, which explains known Z stereoselectivity of the nucleophilic addition to monosubstituted acetylenes. When an azo group is introduced, the reaction becomes more endothermal, and the energy barriers to the formation of both Z and E isomers increase. Among other reasons for lowering of the activity of 2-arylazopyrroles during vinylation we consider possible reaction of acetylene addition at the most remote nitrogen atom of the azo group and participation of the anion center in cation chelation (K+ in the calculation).

Keywords

acetylene pyrrole 2-phenylpyrrole vinylation N-vinylpyrroles anions mechanism ab initio calculation 

References

  1. 1.
    N. Yokomichi, K. Saki, S. Tada, and T. Yamabe, Synth. Met., 69, 577 (1995).CrossRefGoogle Scholar
  2. 2.
    G. Zotti, S. Zecchin, G. Schiavon, et al., ibid., 78, 51–57 (1996).CrossRefGoogle Scholar
  3. 3.
    A. Chyla, S. Kucharski, J. Sworakowski, and M. Bieñkovski, Thin Solid Films, 284/285, 496–499 (1996).CrossRefGoogle Scholar
  4. 4.
    J. D. Nero and D. Laks, Synth. Met., 101, 440/441 (1999).Google Scholar
  5. 5.
    Y. Ishida and Y. Murata, JP 06145544 (1994) [Chem. Abstr., 121, 282311 (1994)].Google Scholar
  6. 6.
    T. Kawafuoni, N. Yanagihara, and Y. Shinjo (Ricoh Co., Ltd., Japan), JP 2002129049 (2002) [Chem. Abstr., 136, 18109 (2002)].Google Scholar
  7. 7.
    Y. Ueno, T. Sato, T. Tomura, and T. Noguchi (Ricoh Co., Ltd., Japan), JP 20022883731 (2002) [Chem. Abstr., 137, 286541 (2002)].Google Scholar
  8. 8.
    Y. Ueno (Ricoh Co., Ltd., Japan), JP 20022347348 (2003) [Chem. Abstr., 138, 18109 (2003)].Google Scholar
  9. 9.
    Z. Zhu, Y. Wang, and Y. Lu, Macromolecules, 36, 9585–9593 (2003).CrossRefGoogle Scholar
  10. 10.
    E. Wagner-Wysiecka, E. Luboch, M. Kowalczyk, and J. F. Biernat, Tetrahedron, 59, 4415–4420 (2003).CrossRefGoogle Scholar
  11. 11.
    A. Facchetti, A. Abbotti, L. Beverina, et al., Chem. Mater., 14, 4996–5005 (2002).CrossRefGoogle Scholar
  12. 12.
    Y. Wang, J. Ma, and Y. Jiang, J. Phys. Chem. A, 109, 7197–7206 (2005).CrossRefGoogle Scholar
  13. 13.
    B. A. Trofimov, A. I. Mikhaleva, S. E. Korostova, et al., Khim. Geterotsikl. Soedin., 213/214 (1977).Google Scholar
  14. 14.
    A. I. Mikhaleva, B. A. Trofimov, S. E. Korostova, et al., Izv. Sib. Otd. Akad. Nauk, Ser. Khim., 107–112 (1979).Google Scholar
  15. 15.
    B. A. Trofimov and A. I. Mikhaleva, N-Vinylpyrroles [in Russian], Nauka, Novosibirsk (1984).Google Scholar
  16. 16.
    B. A. Trofimov, in: The Chemistry of Heterocyclic Compounds, Part 2, Vinylpyrroles, Vol. 48, R. A. Jones (ed.), Wiley, New York (1992), pp. 131–298.CrossRefGoogle Scholar
  17. 17.
    B. A. Trofimov, E.Yu. Schmidt, A. I. Mikhaleva, et al., Eur. J. Org. Chem., 17, 4021–4033 (2006).CrossRefGoogle Scholar
  18. 18.
    J. Tomasi, B. Mennucci, and E. Cancès, J. Mol. Struct. (Theochem), No. 464, 211–226 (1999).Google Scholar
  19. 19.
    G. I. Almerindo, D. W. Tondo, and J. R. Pliego, Jr., J. Phys. Chem. A, 108, 166–171 (2004).CrossRefGoogle Scholar
  20. 20.
    C. Gonzalez and H. B. Schlegel, J. Phys. Chem., 94, 5523–5527 (1990).CrossRefGoogle Scholar
  21. 21.
    L. Onsager, J. Am. Chem. Soc., 58, 1486–1493 (1936).CrossRefGoogle Scholar
  22. 22.
    J. G. Kirkwood, J. Chem. Phys., No. 2, 351–361 (1934).Google Scholar
  23. 23.
    O. Tapia and O. Goscinski, Mol. Phys., 29, 1653–1661 (1975).CrossRefGoogle Scholar
  24. 24.
    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).CrossRefGoogle Scholar
  25. 25.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1988).CrossRefGoogle Scholar
  26. 26.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem., 14, 1347–1363 (1993).CrossRefGoogle Scholar
  27. 27.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian-98_Revision A.6, Gaussian, Inc., Pittsburgh PA (1998).Google Scholar
  28. 28.
    F. G. Bordwell, Acc. Chem. Res., 21, 456–463 (1988).CrossRefGoogle Scholar
  29. 29.
    B. A. Trofimov, A. I. Shatenshtein, É. S. Petrov, et al., Khim. Geterotsikl. Soedin., 632–638 (1980).Google Scholar
  30. 30.
    V. A. Palm, Quantitative Theory of Organic Reactions [in Russian], Khimiya, Leningrad (1977).Google Scholar
  31. 31.
    F. G. Bordwell, J. S. Branca, D. L. Huges, and W. N. Olmstead, J. Org. Chem., 45, 3305–3313 (1980).CrossRefGoogle Scholar
  32. 32.
    T. I. Temnikova, A Course on the Theoretical Principles of Organic Chemistry [in Russian], Khimiya, Leningrad (1968).Google Scholar
  33. 33.
    S. I. Miller and G. Shkapenko, J. Am. Chem. Soc., 81, 5038–5041 (1955).CrossRefGoogle Scholar
  34. 34.
    T. Shimanouchi, “Molecular Vibrational Frequencies” in NIST Chemistry WebBook, NIST Standard Reference Database No. 69, P. J. Linstrom and W. G. Mallard (eds.), June 2005, National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov).Google Scholar
  35. 35.
    E. Lange and K. P. Mishenko, Z. Phys. Chem. A, 149, 1–41 (1930).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • V. B. Kobychev
    • 1
  • N. M. Vitkovskaya
    • 1
  • E. Yu. Shmidt
    • 2
  • E. Yu. Senotrusova
    • 2
  • B. A. Trofimov
    • 2
  1. 1.Irkutsk State UniversityIrkutsk
  2. 2.A. E. Favorskii Institute of ChemistryRussian Academy of SciencesIrkutsk

Personalised recommendations