Advertisement

Journal of Structural Chemistry

, Volume 48, Issue 5, pp 906–913 | Cite as

Properties and X-ray structural study of volatile dimethylgold(III) β-iminoketonates

  • G. I. Zharkova
  • I. A. Baidina
  • I. K. Igumenov
Article

Abstract

Three complexes of dimethylgold(III) of a general formula of (CH3)2Au(R1-CNH-CH-CO-R2) involving β-imino-derivatives of acetylacetone (k-acac), trifluoroacetylacetone (k-tfa), and pivaloyltrifluoroacetone (k-pta) are studied for the first time with single crystal X-ray diffraction. Synthesis and properties of these compounds are presented along with thermal properties determined by the DTA technique. The structures of the compounds in question are based on monomeric complexes. Gold atoms have a slightly distorted square-planar coordination involving oxygen and nitrogen atoms of the β-iminoketonate ligand and two methyl groups. Geometrical characteristics of the coordination cores are the following: bond lengths of Au-CMe fall within 2.008–2.050 Å; average Au-O and Au-N distances are 2.094 Å and 2.068 Å respectively. In the structure of (CH3)2Au(k-acac) gold complexes are joined by hydrogen bonds to give infinite chains with the shortest Au...Au separation of 5.396 Å. In the crystals of the fluorinated compounds coplanar molecules make infinite stacks. The shortest intra-stack Au...Au separation of 3.416 Å is observed for the complex of (CH3)2Au(k-pta) that possesses the largest thermal stability among the investigated compounds.

Keywords

dimethylgold(III) β-iminoketonates structure synthesis volatility thermal stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. I. Zharkova, I. K. Igumenov, and S.V. Zemskov, Koordinats. Khim., 6, No. 5, 720–723 (1980).Google Scholar
  2. 2.
    G. I. Zharkova, N. M. Tyukalevskaya, I. K. Igumenov, and S. V. Zemskov, ibid., 14, No. 10, 1362–1367 (1988).Google Scholar
  3. 3.
    K. I. Kradenov, B. A. Kolesov, G. I. Zharkova, and N. M. Tyukalevskaya, Izv. Sib. Otd. Ross. Akad. Nauk, Ser. Khim. Nauk, 5, No. 1, 57–64 (1989).Google Scholar
  4. 4.
    G. I. Zharkova, N. M. Tyukalevskaya, I. K. Igumenov, and S. V. Zemskov, ibid., 5, No. 17, 145–149 (1988).Google Scholar
  5. 5.
    P. P. Semyannikov, G. I. Zharkova, V. M. Grankin, et al., Metalloorg. Khim., 1, No. 5, 1105–1112 (1988).Google Scholar
  6. 6.
    P. P. Semyannikov, V. M. Grankin, I. K. Igumenov, and G. I. Zharkova, J. Phys. IV, 5, C5-213–C5-220 (1995).Google Scholar
  7. 7.
    K. Ueno, H. Kovanaschi, and I. Yoshide, Mem. Fac. Eng. Kyushu Unit., 38, No. 1, 83–87 (1978).Google Scholar
  8. 8.
    G. M. Sheldrick, SHELX-97-1, Univ. Göttingen, Germany (1997).Google Scholar
  9. 9.
    G. I. Zharkova, I. A. Baidina, and I. K. Igumenov, J. Struct. Chem., 47, No. 6, 1117–1126 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • G. I. Zharkova
    • 1
  • I. A. Baidina
    • 1
  • I. K. Igumenov
    • 1
  1. 1.A. V. Nikolaev Institute of Inorganic Chemistry, Siberian DivisionRussian Academy of SciencesNovosibirsk

Personalised recommendations