Journal of Structural Chemistry

, Volume 48, Issue 5, pp 789–795 | Cite as

Chemical bond in alkali metal sulfates

  • Yu. N. Zhuravlev
  • L. V. Zhuravleva
  • O. V. Golovko


In the context of the density functional theory of the local electron density the valence and differential density distribution in crystalline sulfates of M2SO4 (M is Li, Rb, and Cs) and double sulfates of MLiSO4 were calculated using the pseudopotential method in the basis set of numerical atomic pseudo-orbitals. It is shown that in lithium sulfate crystallographically inequivalent oxygen atoms are in different charge states and have a different force of chemical bonding with sulfur. Anions are bonded to each other through lithium atoms that form tetrahedral complexes with oxygen. In rubidium sulfates the electron clouds of the anions overlap and chain structures form. Chemical bonding between the anion and the cation has an ionic nature. These features of the electron structure manifest themselves in double sulfates, where LiO4 complexes that link the anionic chains also form, and heavy metals serve as cations.


density functional electron density sublattices differetial density chemical bonding lithium sulfate rubidium sulfate cesium sulfate double sulfates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. S. Aleksandrov and B. V. Beznosikov, Structural Phase Transitions in Crystals (potassium sulfate family) [in Russian], Nauka, Novosibirsk (1993).Google Scholar
  2. 2.
    I. N. Flerov, A. V. Kartashev, and V. A. Grankina, Fiz. Tverd. Tela, 47, No. 4, 696–704 (2005).Google Scholar
  3. 3.
    V. Lemos, F. Camagro, A. C. Hernandes, and P. T. C. Freire, J. Raman Spectr., 24, No. 3, 133–137 (1992).CrossRefGoogle Scholar
  4. 4.
    E. S. Silveria, P. T. C. Freire, O. Pilla, and V. Lemos, Phys. Rev. B, 51, No. 1, 593–596 (1995).CrossRefGoogle Scholar
  5. 5.
    A. R. Lim, S. H. Chon, and S.-Y. Jeong, J. Phys.: Condens. Matter., 12, 9293–9305 (2000).CrossRefGoogle Scholar
  6. 6.
    V. Katkanant, Phys. Rev. B, 51, No. 1, 146–152 (1995).CrossRefGoogle Scholar
  7. 7.
    Yu. N. Zhuravlev, L. V. Zhuravleva, and A. S. Poplavnoi, Izv. Vyssh. Uchebn. Zaved., Fizika, No.1, 72–77 (2003).Google Scholar
  8. 8.
    Yu. N. Zhuravlev and A. S. Poplavnoi, J. Struct. Chem., 44, No. 2, 187–192 (2003).CrossRefGoogle Scholar
  9. 9.
    Yu. N. Zhuravlev and A. S. Poplavnoi, Kristallografiya, 50, No.1, 39 (2005).Google Scholar
  10. 10.
    Yu. N. Zhuravlev and A. S. Poplavnoi, J. Struct. Chem., 42, No. 6, 882–887 (2001).CrossRefGoogle Scholar
  11. 11.
    A. G. Nord, Acta Crystallogr. B, 32, 982/983 (1976).CrossRefGoogle Scholar
  12. 12.
    B. M. Suleiman, M. Gustavsson, E. Karawacki, and A. Lunden, J. Phys. D.: Appl. Phys., 30, 2553–2560 (1997).CrossRefGoogle Scholar
  13. 13.
    D. C. Parfitt, D. A. Keen, S. Hull, et al., Phys. Rev. B, 72, No. 5, 4121–4128 (2005).CrossRefGoogle Scholar
  14. 14.
    A. G. Nord, Acta Crystallogr. B, 30, 1640/1641 (1974).CrossRefGoogle Scholar
  15. 15.
    A. G. Nord, Acta Chem. Scand. A, 30, 198–202 (1976).CrossRefGoogle Scholar
  16. 16.
    J. Mata, X. Solans, M. T. Calvet, et al., J. Phys.: Condens. Matter., 14, 5211 (2002).CrossRefGoogle Scholar
  17. 17.
    H. Mashiyama, K. Hasebe, S. Tanisaki, et al., J. Phys. Soc. Jpn., 47, 1198–1201 (1979).CrossRefGoogle Scholar
  18. 18.
    A. I. Kruglik, B. A. Simonov, E. P. Zhelezin, and N. V. Belov, Dokl. Akad. Nauk SSSR, 247, No. 7, 1384–1386 (1979).Google Scholar
  19. 19.
    X.-B. Wang, J. Nicholas, and L.-S. Wang, J. Chem. Phys., 113, No. 24, 10837–10840 (2000).CrossRefGoogle Scholar
  20. 20.
    K. Hasebe and T. Asahi, Phys. Rev. B, 41, No. 10, 6794–6800 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Yu. N. Zhuravlev
    • 1
  • L. V. Zhuravleva
    • 1
  • O. V. Golovko
    • 1
  1. 1.HPE SEI “Kemerovo State University”Russia

Personalised recommendations