Advertisement

Journal of Structural Chemistry

, Volume 48, Issue 2, pp 282–288 | Cite as

Synthesis, crystal structure, and thermal behavior of dimethylgold(III) acetate

  • A. A. Bessonov
  • I. A. Baidina
  • N. B. Morozova
  • P. P. Semyannikov
  • S. V. Trubin
  • N. V. Gelfond
  • I. K. Igumenov
Article

Abstract

A dimethylgold(III) compound with an acetate fragment [(CH3)2AuOCOCH3]2 has been synthesized. The complex was identified from the melting point, IR, 1H NMR, and mass spectrometry data. The temperature dependence of saturated vapor pressure over crystals has been measured and the thermodynamic parameters of sublimation have been determined by Knudsen’s effusion method with mass spectrometric measurements of the composition of the gas phase: ΔH subl = 100.87 kJ·mol−1, ΔS subl = 216.67 J·mol−1·K−1. The thermal behavior of the solid compound was investigated by differential thermal analysis. The compound was studied by X-ray diffraction. Crystal data for C8H18Au2O4: a = 12.214(5) Å, b = 14.307(3) Å, c = 7.6635(15) Å; β = 103.39(3)°, Z = 4, d calc = 2.917 g/cm3, space group P2(1)/c, R = 0.0261. The [(CH3)2AuOCOCH3]2 dimer complex with an Au...Au distance of 2.989 Å is the structural unit. The gold atom has a square plane environment of two carbon and two oxygen atoms; the Au-O distances vary from 2.118 Å to 2.139 Å. The molecules are arranged in chains linked by van der Waals interactions.

Keywords

dimethylgold (III) acetate dimer synthesis crystal structure thermal behavior vapor pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. T. Kodas and M. J. Hampden-Smith (eds.), The Chemistry of Metal CVD, VCH, Weinheim (1994).Google Scholar
  2. 2.
    G. W. Rice and R. S. Tobias, Inorg. Chem., 14, No. 10, 2402–2407 (1975).CrossRefGoogle Scholar
  3. 3.
    G. K. Anderson, Adv. Organomet. Chem., 20, 39–114 (1982).CrossRefGoogle Scholar
  4. 4.
    R. J. Puddephatt, Topics in Inorganic Chemistry and General Chemistry, Vol. 16, R. J. H. Clark (ed.), Elsevier, Amsterdam (1978).Google Scholar
  5. 5.
    H. Gilman and L. A. Woods, J. Am. Chem. Soc., 70, No. 2, 550–552 (1948).CrossRefGoogle Scholar
  6. 6.
    F. H. Brain and C. S. Gibson, J. Chem. Soc., 762–767 (1939).Google Scholar
  7. 7.
    G. I. Zharkova, N. M. Tyukalevskaya, I. K. Igumenov, and S. V. Zemskov, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 5, No. 5, 145–148 (1988).Google Scholar
  8. 8.
    M. Bergfeld and H. Schmidbaur, Chem. Ber., 102, No. 7, 2408–2413 (1969).CrossRefGoogle Scholar
  9. 9.
    G. I. Zharkova, I. K. Igumenov, and S. V. Zemskov, Koordinats. Khim., 6, No. 5, 720–723 (1980).Google Scholar
  10. 10.
    P. P. Semyannikov, I. K. Igumenov, S. V. Trubin, et al., Thermochim. Acta, 432, 91–98 (2005).CrossRefGoogle Scholar
  11. 11.
    G. M. Sheldrick, SHELX-97. Release 97-1, Univ. Göttingen, Germany (1997).Google Scholar
  12. 12.
    A. N. Nesmeyanov, E. G. Perevalova, K. I. Grandberg, and D. A. Lemenovskii, Izv. Akad. Nauk SSSR, No. 5, 1124–1137 (1974).Google Scholar
  13. 13.
    F. Cariati and L. Naldini, Inorg. Chim. Acta, 5, 172–174 (1971).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • A. A. Bessonov
    • 1
  • I. A. Baidina
    • 1
  • N. B. Morozova
    • 1
  • P. P. Semyannikov
    • 1
  • S. V. Trubin
    • 1
  • N. V. Gelfond
    • 1
  • I. K. Igumenov
    • 1
  1. 1.A. V. Nikolaev Insitute of Inorganic Chemistry, Siberian DivisionRussian Academy of SciencesNovosibirsk

Personalised recommendations