Journal of Structural Chemistry

, Volume 48, Issue 2, pp 212–218 | Cite as

Chemical bonding and electronic structure of LaMnO3 and La0.75MnO3 orthorhombic crystals

  • V. M. Tapilin


The electronic structure of the LaMnO3 orthorhombic crystal of a stoichiometric composition and of La0.75MnO3 crystals with a La vacancy in the unit cell is calculated in the LSDA+U approximation of density functional theory. The calculations showed that LaMnO3 is an insulator with a forbidden gap of 0.5 eV and with antiferromagnetic ordering of magnetic moments. The magnetic moment on the manganese ions is 3.78 BM. The La atom has ionic bonds in the lattice, while the bond between oxygen and manganese is covalent. After lanthanum has been removed, geometry optimization of the unit cell leads to La0.75MnO3 stable structures. In one of the structures, which is lower in energy, the states of manganese may be attributed to Mn4+ ions. In both structures with removed lanthanum, the oxygen ions have reduced effective charge, so that one can speak about O ions appearing along with O2− in the structure. The oxygen, as well as lanthanum and manganese, ions are nonequivalent in these structures; their nonequivalence is primarily reflected by the local densities of states. This leads to charge and magnetic nonequivalence of ions. In La0.75MnO3 crystals, the degree of bond covalence between manganese and oxygen decreases.


lanthanum manganites chemical bond density of states magnetic moment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. G. Tejuca, J. L. G. Fierro, and J. M. D. Tascon, Adv. Catal., 36, 237 (1989).CrossRefGoogle Scholar
  2. 2.
    H. Arai and M. Machida, Catal. Today, 35, 27 (1997).CrossRefGoogle Scholar
  3. 3.
    V. A. Sadykov, L. A. Isupova, S. F. Tikhov, and O. N. Kimkhai, Mat. Res. Soc. Symp. Ser., 386, 293 (1995).Google Scholar
  4. 4.
    T. Kuznetsova, V. Sadykov, L. Batuev, et al., React. Kinet. Catal. Lett., 86, 249–256 (2005).CrossRefGoogle Scholar
  5. 5.
    T. Kuznetsova, V. Sadykov, L. Batuev, et al., ibid., 257–266.Google Scholar
  6. 6.
    K. S. Song, H. X. Cui, S. D. Kim, and S. K. Kang, Catal. Today, 47, 155 (1999).CrossRefGoogle Scholar
  7. 7.
    R. Mahendiran, S. K. Tiwary, A. K. Raychaudhuri, et al., Phys. Rev. B, 53, 3348 (1996).CrossRefGoogle Scholar
  8. 8.
    K. Tabata, Y. Hirano, and E. Suzuki, Appl. Catal. A: General, 170, 245 (1998).CrossRefGoogle Scholar
  9. 9.
    V. A. Gavrichkov, S. G. Ovchinnikov, and L. E. Yakimov, Zh. Eksp. Teor. Fiz., 129, 1103 (2006).Google Scholar
  10. 10.
    M. Nicastro and C. H. Patterson, Phys. Rev. B, 65, 20511–1 (2002).CrossRefGoogle Scholar
  11. 11.
    D. A. Papaconstantopoulos and W. E. Pickett, ibid., 57, 12751–12756 (1998).CrossRefGoogle Scholar
  12. 12.
    P. G. Mathi, G. J. S. M. Subramoniam, and R. Asokamani, ibid., 51, 16575–16581 (1995).CrossRefGoogle Scholar
  13. 13.
    I. Solovyev, N. Hamada, and K. Terakura, ibid., 53, 7158–7170 (1996).CrossRefGoogle Scholar
  14. 14.
    W. Y. Hu, M. C. Qian, Q. Q. Zheng, et al., ibid., 61, 1233 (2000).Google Scholar
  15. 15.
    Q. Qian, T. A. Tyson, S. Savrassov, et al., ibid., 68, 014429 (2003).CrossRefGoogle Scholar
  16. 16.
    D. D. Sarma, N. Shanthi, A. R. Barman, et al., Phys. Rev. Lett., 75, 1126 (1995).CrossRefGoogle Scholar
  17. 17.
    D. D. Sarma, N. Shanthi, and P. Mahadevan, Phys. Rev. B, 54, 1625–1628 (1996).CrossRefGoogle Scholar
  18. 18.
    W. E. Pickett and D. J. Singh, ibid., 53, 1146.Google Scholar
  19. 19.
    P. Ravindran, A. Kjekshus, H. Fjellvag, et al., ibid., 65, 064445–1 (2002).CrossRefGoogle Scholar
  20. 20.
    Z. Fang, I. V. Solovyev, and K. Terakura, Phys. Rev. Lett., 84, 3169–3172 (2000).CrossRefGoogle Scholar
  21. 21.
    V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B, 44, 943 (1991).CrossRefGoogle Scholar
  22. 22.
    V. I. Anisimov, I. V. Solovyev, M. A. Korotin, et al., ibid., 48, 16929 (1993).CrossRefGoogle Scholar
  23. 23.
    I. V. Solovyev, P. N. Dederichs, and V. I. Anisimov, ibid., 50, 16861 (1994).CrossRefGoogle Scholar
  24. 24.
    S. Baroni, A. Dal Corso, S. de Gironcoli, et al.,
  25. 25.
    M. Cococcioni and S. de Gironcoli, Phys. Rev. B, 71, 35105 (2005).CrossRefGoogle Scholar
  26. 26.
    T. Arima, Y. Tokura, and J. B. Torrance, ibid., 48, 17006 (1993).CrossRefGoogle Scholar
  27. 27.
    J. B. A. A. Elemancs, van Laar, K. R. van der Veen, and B. O. Loopstra, J. Solid State Chem., 3, 238 (1971).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • V. M. Tapilin
    • 1
  1. 1.G. K. Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirsk

Personalised recommendations