Journal of Structural Chemistry

, Volume 48, Issue 1, pp 46–50 | Cite as

Electronic effects of conjugated enones on their reactivity in transformations of ADDN type

  • É. R. Latypova
  • R. Ya. Kharisov
  • I. V. Vakulin
  • R. F. Talipov
  • G. Yu. Ishmuratov


Using RHF/3-21G, RHF/6-31G(d, p), MP2/6-31G(d, p), B3LYP/6-31G(fd, p) approximations the structure and 13C NMR spectra of 2-alkylsubstituted cyclohexene-2-ones and 2-alkylacroleins are studied and calculated. In the series of 2-alkylcyclohexene-2-ones the effect of the substituent on a deviation from coplanarity of the C=C-C=O fragment is more expressed in comparison with 2-alkylacroleins. This deviation (5°) is not enough to explain the observed properties of 2-alkylcyclohexene-2-ones due to disturbed conjugation. The particular behavior of (R)-4-mentenone in reactions of 1,4-addition and ozonolysis is explained by a more expressed +I-effect of the alkyl substituent in α-position.


(R)-4-mentenone 2-alkylsubstituted cyclohexene-2-ones and alkylacroleins conformation analysis ab initio calculations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. M. Whitesidea, W. F. Fischer, J. S. Fillipo, et al., J. Am. Chem. Soc., 91, No. 17, 4871–4882 (1969).CrossRefGoogle Scholar
  2. 2.
    G. H. Posner, Org. React., 19, 293–296 (1972).MathSciNetGoogle Scholar
  3. 3.
    É. R. Latypova, R. Ya. Kharisov, G. Yu. Ishmuratov, and R. F. Talipov, (R)-4-Mentenone in the Reaction of Conjugated 1,4-Addition of Organometallic Reagents, Proceedings of the 4th International Conference of Young Scientists “Current tendencies in organic synthesis and problems of chemical education” [in Russian], St.Petersburg (2005).Google Scholar
  4. 4.
    R. Ya. Kharisov, R. R. Gazetdinov, O. V. Botsman, et al., Zh. Org. Khim., 36, No. 7, 1047–1050 (2002).Google Scholar
  5. 5.
    M. W. Smidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem., 14, 1347–1363 (1993).CrossRefGoogle Scholar
  6. 6.
    F. Jensen, Introduction to Computational Chemistry, Wiley, Chichester (1999).Google Scholar
  7. 7.
    J. A. Pople, P. M. W. Gill, and B. G. Johnson, Chem. Phys. Lett., No. 199, 557–570 (1992).Google Scholar
  8. 8.
    W. Kohn, A. D. Backe, and R. G. Parr, J. Phys. Chem., 100, 12974–12980 (1996).Google Scholar
  9. 9.
    W. J. Hehre, L. Radom, P. V. R. Schleyer, et al., Ab initio Molecular Orbital Theory, Wiley-Interscience, New York (1985).Google Scholar
  10. 10.
    C. Kubli-Garfias, J. Mol. Struct. (Thechem), 422, 167–177 (1998).CrossRefGoogle Scholar
  11. 11.
    C. Kubli-Garfias and R. Vazguez-Ramirez, ibid., 454, 267–275.Google Scholar
  12. 12.
    General Organic Chemistry, 2 [in Russian], Khimiya, Moscow (1982).Google Scholar
  13. 13.
    J. March, Advanced Organic Chemistry, McGraw Hill (1968).Google Scholar
  14. 14.
    J. P. Collman, L. S. Hegedus, J. R. Norton, and R. G. Finke Principles and Applications of Organotransition Metal Chemistry, University Science Books: Mill Valley, California (1987).Google Scholar
  15. 15.
    B. A. Ershov, B. I. Ionin, et al., NMR Spectroscopy in Organic Chemistry [in Russian], Izd-vo Leningr. Univ., Leningrad (1983).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • É. R. Latypova
    • 1
  • R. Ya. Kharisov
    • 2
  • I. V. Vakulin
    • 1
  • R. F. Talipov
    • 1
  • G. Yu. Ishmuratov
    • 2
  1. 1.Bashkir State UniversityUfa
  2. 2.Institute of Organic Chemistry, Ufa Research CenterRussian Academy of SciencesRussia

Personalised recommendations