Advertisement

Journal of Structural Chemistry

, Volume 47, Issue 6, pp 1170–1176 | Cite as

Quantum chemical study of complexation of trimethylaluminum with chlorine-containing solvents

  • I. V. Vakulin
  • A. É. Zagidullina
  • R. F. Talipov
  • O. S. Vostrikova
Brief Communications

Abstract

Complexation of trimethylaluminum with chlorine-containing organic solvents has been studied in an MP2/6-31G(d, tp) approximation. Trimethylaluminum can form complexes with dichloromethane and dichloroethane. For 1:1 and 2:1 complexes, the geometrical and thermodynamic parameters have been determined. For 2:1 complexes, two orientations of trimethylaluminum relative to the chloroalkane molecule are most favorable. Thermodynamic parameters of dimerization and complexation reactions have been studied for reactions of trimethylaluminum with dichloromethane and dichloroethane. For trimethylaluminum, dimerization was found to be preferable to complexation.

Keywords

quantum chemistry ab initio xxx DFT calculations trimethylaluminum complexation with chloroalkanes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Wilkinson, G. A. Stone, and E. W. Abel (eds.), Comprehensive Organometallic Chemistry, Vol. 1, Pergamon, New York (1982), pp. 555–670.Google Scholar
  2. 2.
    T. Mole and E. A. Jeffery, Organoaluminum Compounds, Elsevier, New York (1972), pp. 85–123.Google Scholar
  3. 3.
    K. Maruoka and H. Yamamoto, Tetrahedron, 44, No. 16, 5001–5032 (1988).CrossRefGoogle Scholar
  4. 4.
    Yu. T. Gafarova, E. F. Dekhtyar, T. F. Dekhtyar, et al., Izv. Ross. Akad. Nauk, Ser. Khim., 4, 951–956 (2003).Google Scholar
  5. 5.
    E. Negishi, Organometallics in Organic Synthesis, Wiley, New York (1980).Google Scholar
  6. 6.
    J. P. Kennedy, N. V. Desai, and S. Sivaram, J. Am. Chem. Soc., 95, No. 19, 6386–6390 (1973).CrossRefGoogle Scholar
  7. 7.
    C. C. J. Roothaan, Rev. Mod. Phys., 23, 69–89 (1951).CrossRefGoogle Scholar
  8. 8.
    J. A. Pople and R. K. Nesbet, J. Chem. Phys., 22, 571–578 (1959).Google Scholar
  9. 9.
    R. McWeeny and G. Dierksen, ibid., 49, 4852–4862 (1968).CrossRefGoogle Scholar
  10. 10.
    C. Möller and M. S. Plesset, Phys. Rev., 46, 618–622 (1934).CrossRefGoogle Scholar
  11. 11.
    S. Saebo and J. Almlof, Chem. Phys. Lett., 154, 83–89 (1989).CrossRefGoogle Scholar
  12. 12.
    J. A. Pople, J. S. Binkley, and R. Seeger, Int. J. Quant. Chem., 10, 1–19 (1976).CrossRefGoogle Scholar
  13. 13.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–792 (1988).CrossRefGoogle Scholar
  14. 14.
    A. D. Becke, Phys. Rev. A, 38, 3098–3106 (1988).CrossRefGoogle Scholar
  15. 15.
    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).CrossRefGoogle Scholar
  16. 16.
    S. F. Boys and F. Bernardi, Mol. Phys., No. 19, 553–566 (1970).Google Scholar
  17. 17.
  18. 18.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem., 14, 1347–1363 (1993).CrossRefGoogle Scholar
  19. 19.
  20. 20.
    R. G. Vranka and E. L. Amma, J. Am. Chem. Soc., 89, No. 13, 3121–3126 (1967).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • I. V. Vakulin
    • 1
  • A. É. Zagidullina
    • 1
  • R. F. Talipov
    • 1
  • O. S. Vostrikova
    • 2
  1. 1.Bashkir State UniversityUfa
  2. 2.Institute of Organic Chemistry, Ufa Scientific CenterRussian Academy of SciencesRussia

Personalised recommendations