Advertisement

Journal of Structural Chemistry

, Volume 47, Issue 6, pp 1022–1031 | Cite as

Modeling the solvation shell of complexes in solution for quantum chemical calculations of electronic spectra

  • O. V. Sizova
  • V. V. Sizov
Article

Abstract

A procedure that allows for solvation effects is suggested; it is designed for quantum chemical calculations of the electronic spectra of complex compounds. Based on Monte Carlo (MC) simulation of the solvation shell one can calculate the electrostatic potential created by the solvation shell at the sites of all atoms of the complex; appropriate corrections are added to the diagonal elements of the Fock matrix and to the matrix elements of the Hamiltonian in the configuration interaction method. The method suggested has been implemented based on the semiempirical (CINDO) version of the CI (configuration interaction) technique and tested on the following compounds: [Ru(NH3)5(py)]2+, [Ru(NH3)5(pyz)]2+, [Ru(bpy)(CN)4]2−, [Ru(NO)(py)4-NC-Ru(py)4(CN)]3+.

Keywords

quantum chemical calculation Monte Carlo method transition metal complexes solvation shell electronic spectra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. S. Hush, and J. R. Reimers, Coord. Chem. Rev., 177, No. 2, 37 (1998).CrossRefGoogle Scholar
  2. 2.
    N. S. Hush, and J. R. Reimers, Chem. Rev., 100, No. 2, 775 (2000).CrossRefGoogle Scholar
  3. 3.
    M. Orozco and F. J. Luque, ibid., No. 11, 4187.CrossRefGoogle Scholar
  4. 4.
    J. Zeng, N. S. Hush, and J. R. Reimers, J. Phys. Chem., 99, No. 26, 10459 (1995).Google Scholar
  5. 5.
    J. Zeng, N. S. Hush, and J. R. Reimers, J. Am. Chem. Soc., 118, No. 8, 2059 (1996).CrossRefGoogle Scholar
  6. 6.
    A. Broo, Chem. Phys., 174, No. 1, 127 (1993).CrossRefGoogle Scholar
  7. 7.
    A. I. Panin and K. V. Simon, Int. J. Quant. Chem., 59, No. 2, 471 (1996).CrossRefGoogle Scholar
  8. 8.
    A. I. Panin and O. V. Sizova, J. Comput. Chem., 17, No. 2, 178 (1996).CrossRefGoogle Scholar
  9. 9.
    O. V. Sizova, V. I. Baranovski, and A. I. Panin, Spectrochim. Acta A, 54, 1601 (1988).Google Scholar
  10. 10.
    J. Ivanic, J. Chem. Phys., 119, No. 18, 9634 (2003).Google Scholar
  11. 11.
    K. K. Stavrev and M. C. Zerner, J. Am. Chem. Soc., 117, No. 33, 8684 (1995).CrossRefGoogle Scholar
  12. 12.
    G. M. Pearl and M. C. Zerner, ibid., 121, No. 2, 399 (1999).CrossRefGoogle Scholar
  13. 13.
    W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, et al., J. Chem. Phys., 79, No. 2, 926 (1983).CrossRefGoogle Scholar
  14. 14.
    W. L. Jorgensen, J. D. Madura, and C. J. Swenson, J. Am. Chem. Soc., 106, No. 22, 6638 (1984); W. L. Jorgensen, and C. J. Swenson, ibid., 107, No. 3, 569 (1985); W. L. Jorgensen and J. Tirado-Rives, ibid., 110, No. 7, 1657 (1988).CrossRefGoogle Scholar
  15. 15.
    V. V. Sizov, “Adsorption of fluids and fluid mixtures in microporous carbon materials. Computer simulation of inhomogeneity effects,” Chemical Sciences Candidate’s Dissertation, St. Petersburg (2004).Google Scholar
  16. 16.
    A. D. Becke, J. Chem. Phys., 98, No. 7, 5648 (1993).CrossRefGoogle Scholar
  17. 17.
    P. J. Hay and W. R. Wadt, ibid., 82, No. 1, 299 (1985); W. R. Wadt and P. J. Hay, ibid., 284.CrossRefGoogle Scholar
  18. 18.
    O. V. Sizova and V. I. Baranovski, J. Comput. Chem., 16, No. 5, 586 (1995).CrossRefGoogle Scholar
  19. 19.
    D. K. Lavallee and E. B. Fleischer, J. Am. Chem. Soc., 94, No. 8, 2583 (1972).CrossRefGoogle Scholar
  20. 20.
    E. B. Fleischer and D. K. Lavallee, ibid., 2599.CrossRefGoogle Scholar
  21. 21.
    C. J. Timpson, C. A. Bignozzi, B. P. Sullivan, et al., J. Phys. Chem., 100, No. 8, 2915 (1996).CrossRefGoogle Scholar
  22. 22.
    C. A. Bignozzi, C. Chiorboli, M. A. Indelli, et al., J. Am. Chem. Soc., 108, No. 24, 7872 (1986).CrossRefGoogle Scholar
  23. 23.
    M. Kovács and A. Horváth, J. Photochem. Photobiol. A: Chem., 163, No. 1, 13 (2004).CrossRefGoogle Scholar
  24. 24.
    T. Megyes, G. Schubert, and M. Kovacs, J. Phys. Chem. A, 107, No. 46, 9903 (2003).CrossRefGoogle Scholar
  25. 25.
    Y. Sakai, H. Tatewaki, and S. Huzinaga, J. Comput. Chem., 3, No. 2, 6 (1982).CrossRefGoogle Scholar
  26. 26.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., ibid., 14, No. 11, 1347 (1993).CrossRefGoogle Scholar
  27. 27.
    A. A. Granovsky, PC GAMESS, Version 6.4, Chemical Cybernetics Laboratory, Moscow State University (2004).Google Scholar
  28. 28.
    F. Roncaroli, L. M. Baraldo, L. D. Slep, and J. A. Olabe, Inorg. Chem., 41, No. 7, 1930 (2002).CrossRefGoogle Scholar
  29. 29.
    O. V. Sizova, N. V. Ivanova, V. V. Sizov, and A. B. Nikolskii, Zh. Obshch. Khim., 74, No. 4, 529 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • O. V. Sizova
    • 1
  • V. V. Sizov
    • 1
  1. 1.St. Petersburg State UniversityRussia

Personalised recommendations