Advertisement

Journal of Structural Chemistry

, Volume 47, Issue 5, pp 913–922 | Cite as

Synthesis, structure, luminescence properties, quantum chemistry and cytotoxic effects of two vanadium(IV) complexes with polypyrazolylborates, HB(pz)3VO(acac) and HB(3,5-Me2pz)3VO(acac)·CH3CN (pz = pyrazole)

  • Y. H. Xing
  • Z. Sun
  • W. Zou
  • J. Song
  • K. Aoki
  • M. F. Ge
Article

Abstract

The reaction of VO(acac)2 (acac = acetylacetonate) with NaHB(pz)3 (pz = pyrazole) or NaHB(3,5-Me2pz)3 in methanol gave vanadium(IV) complexes HB(pz)3VO(acac) (1) or HB(3,5-Me2pz)3VO(acac)·CH3CN (2), respectively. The complexes 1 and 2 were characterized by elemental analysis, IR, UV-vis, NMR and X-ray diffraction crystallography methods. Complex 1 crystallizes in space group P21/c, a = 7.641(2) Å, b = 17.008(4) Å, c = 13.362(2) Å; β = 92.092(17)°, V = 1735.5(7) Å3, Z = 4. Complex 2 crystallizes in space group P21/c, a = 17.410(13) Å, b = 8.076(16) Å, c = 19.300(13) Å; β = 101.75(5)°, V = 2657(6) Å3, Z = 4. X-ray structure analyses have shown that the complexes 1 and 2 are monomeric with a similar coordination environment of the vanadium atom. Luminescence properties and cytotoxic effects of the complexes are discussed. On CBRH-7919 cells, the complexes 1 and 2 caused a slight stimulation of growth at low doses (1–10 µM) and a significant cytotoxic effect at higher doses (100–1000 µM). The electronic structure and the bonding characters of the two complexes were analyzed with ab initio calculations.

Keywords

vanadium complexes tripyrazolylborate crystal structure luminescence cytotoxic effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. R. Eady, Coord. Chem. Rev., 237, 23 (2003).CrossRefGoogle Scholar
  2. 2.
    M. Ahmed, P. Schwendt, J. Marek, and M. Sivak, Polyhedron, 23, 655 (2004).CrossRefGoogle Scholar
  3. 3.
    I. Osinska-Krolicka, H. Podsiadly, A. Bukietynska, et al., J. Inorg. Biochem., 98, 2087 (2004).CrossRefGoogle Scholar
  4. 4.
    J. McMaster, Annu. Rep. Prog. Chem., Sect, A98, 593 (2002).CrossRefGoogle Scholar
  5. 5.
    J. Blower, ibid., 615.CrossRefGoogle Scholar
  6. 6.
    H. Sakurai, A. Tamura, T. Takino, et al., Inorg. React. Mechan., 2, 69 (2000).Google Scholar
  7. 7.
    Y. Shechter and S. J. D. Karlish, Nature, 286, 556 (1980).CrossRefGoogle Scholar
  8. 8.
    C. E. Heyliger, A. G. Tahiliani, and J. H. McNeil, Science, 227, 1474 (1985).CrossRefGoogle Scholar
  9. 9.
    G. R. Dubyak and A. Kleinzeller, J. Biol. Chem., 255, 5306 (1980).Google Scholar
  10. 10.
    J. Meyerovitch, Z. Farfel, J. Sack, and Y. Shechter, ibid., 262, 6658 (1987)Google Scholar
  11. 11.
    Y. Shechter, Diabetes, 39, 1 (1990).Google Scholar
  12. 12.
    A. J. Stemmler and C. J. Burrows, J. Biol. Inorg. Chem., 6, 100 (2001).CrossRefGoogle Scholar
  13. 13.
    K. H. Thompson and C. Orvig, J. Chem. Soc., Dalton Trans., 2885 (2000).Google Scholar
  14. 14.
    D. Rehder, J. C. Pessoa, C. F. G. Geraldes, et al., J. Biol. Inorg. Chem., 7, 384 (2002).CrossRefGoogle Scholar
  15. 15.
    H. Sakurai, K. Tsuchiya, M. Nukatsuka, et al., J. Clin. Biochem. Nutr., 8, 193 (1990).Google Scholar
  16. 16.
    Y. Shechter, A. Shisheva, R. Lazar, et al., Biochem., 31, 2063 (1992).CrossRefGoogle Scholar
  17. 17.
    D. C. Crans, J. J. Smee, E. Gaidamauskas, and L. Q. Yang, Chem. Rev., 104, 849 (2004).CrossRefGoogle Scholar
  18. 18.
    G. Micera, D. Sanna, E. Kiss, et al., J. Inorg. Biochem., 75, 303 (1999).CrossRefGoogle Scholar
  19. 19.
    L. L. G. Justino, M. L. Ramos, M. M. Caldeira, and V. M. S. Gil, Inorg. Chim. Acta, 356, 179 (2003).CrossRefGoogle Scholar
  20. 20.
    W. Plass, Coord. Chem. Rev., 237, 205 (2003).CrossRefGoogle Scholar
  21. 21.
    N. Kitajima and W. B. Tolman, Progr. Inorg. Chem., 43, 419 (1995).Google Scholar
  22. 22.
    S. Trofimenko, Chem. Rev., 72, 497 (1972).CrossRefGoogle Scholar
  23. 23.
    B. Machura, J. O. Dziegielewski, R. Kruszynski, et al., Inorg. Chim. Acta, 357, 1011 (2004).CrossRefGoogle Scholar
  24. 24.
    E. Gutierrez, S. A. Hudson, A. Monge, et al., J. Organomet. Chem., 551, 215 (1998).CrossRefGoogle Scholar
  25. 25.
    H. V. R. Dias and X. Y. Wang, Polyhedron, 23, 2533 (2004).CrossRefGoogle Scholar
  26. 26.
    N. S. Dean, M. R. Bond, C. J. O’Connor, and C. J. Carrano, Inorg. Chem., 35, 7643 (1996).CrossRefGoogle Scholar
  27. 27.
    S. Holmes and C. J. Carrano, ibid., 30, 1231 (1991).CrossRefGoogle Scholar
  28. 28.
    E. Kime-Hunt, K. Spartalian, M. DeRusha, et al., ibid., 28, 4392 (1989).CrossRefGoogle Scholar
  29. 29.
    J. Reglinski, M. Garner, I. D. Cassidy, et al., J. Chem. Soc., Dalton Trans., 2119 (1999).Google Scholar
  30. 30.
    S. Trofimenko, J. Am. Chem. Soc., 89, 6288 (1967).CrossRefGoogle Scholar
  31. 31.
    G. M. Sheldrick, Acta Crystallogr., A46, 467 (1990).Google Scholar
  32. 32.
    R. Herbst-Irmer and G. M. Sheldrick, ibid., B54, 443 (1998).Google Scholar
  33. 33.
    L. J. Farrugia, J. Appl. Crystallogr., 30, 565 (1997).CrossRefGoogle Scholar
  34. 34.
    R. Garcia, Y. H. Xing, A. Domingos, et al., Inorg. Chim. Acta, 343, 27 (2003).CrossRefGoogle Scholar
  35. 35.
    R. L. Beddoes, D. Collison, F. E. Mabbs, and M. A. Passand, Polyhedron, 9, 2483 (1990).CrossRefGoogle Scholar
  36. 36.
    S. S. Amin, K. Cryer, B. Y. Zhang, et al., Inorg. Chem., 39, 406 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Y. H. Xing
    • 1
  • Z. Sun
    • 3
  • W. Zou
    • 2
  • J. Song
    • 2
  • K. Aoki
    • 4
  • M. F. Ge
    • 3
  1. 1.College of Chemistry and Chemical EngineeringLiaoning Normal UniversityChina
  2. 2.College of Life ScienceLiaoning Normal UniversityChina
  3. 3.Institute of ChemistryChinese Academy of SciencesBeijingChina
  4. 4.Department of Materials ScienceToyohashi University of TechnologyToyohashiJapan

Personalised recommendations