Journal of Structural Chemistry

, Volume 47, Supplement 1, pp S32–S49 | Cite as

Spatial structure of water over the whole region of short-range ordering

  • A. K. Lyashchenko
  • L. V. Dunyashev
  • V. S. Dunyashev


A new approach to spatial analysis of molecular arrangement over the whole region of short-range ordering is suggested. The structural properties of water are calculated by the Monte-Carlo method using the SPC/E intermolecular interaction potential. Structural correlations are considered at distances of up to 10 Å. The functions g OO, g OH, and g HH, and the partial functions corresponding to different local densities of surroundings and different coordination numbers of water molecules have been obtained. An analytical procedure has been developed to find the spatial distribution of particles, and the total and partial functions have been determined for particles of the same (having identical c.n.1 and c.n.2) and different types. The functions are considered for layers R min < R < R max corresponding to different coordination spheres of water molecules (up to 10 Å). A structural model of water is suggested, in which the deviation of the 3D net of H bonds from tetrahedricity is associated with the formation of configurations complementary to icelike configurations of water. The model is supported by the results of computer simulation.


structure of water Monte-Carlo method coordination number tetrahedral ordering 


  1. 1.
    O. Ya. Samoilov, Structure of Aqueous Electrolytes and Ion Hydration [in Russian], AN SSSR, Moscow (1957).Google Scholar
  2. 2.
    D. Éisenberg and V. Kautzman, Structure and Properties of Water [in Russian], Gidrometeoizdat, Moscow (1975).Google Scholar
  3. 3.
    F. Franks (ed.), Water: A Comprehensive Treatise, Vol. 1, Plenum Press, New York (1972).Google Scholar
  4. 4.
    F. Franks (ed.), Water and Aqueous Solutions Below 0 °C [Russian translation], Naukova Dumka, Kiev (1985).Google Scholar
  5. 5.
    V. P. Voloshin, N. N. Medvedev, Yu. I. Naberukhin, et al., Zh. Strukt. Khim., 46, No. 3, 451–458 (2005).Google Scholar
  6. 6.
    A. H. Narten, J. Chem. Phys., 56, No. 11, 3267 (1972).CrossRefGoogle Scholar
  7. 7.
    I. Z. Fischer, Statistical Theory of Liquids [in Russian], GIFML, Moscow (1961).Google Scholar
  8. 8.
    B. N. Delaunay, N. P. Dolbilin, M. I. Shtogrin, and R. V. Galiulin, Dokl. Akad. Nauk SSSR, 227, No. 1, 19–23 (1976).Google Scholar
  9. 9.
    O. Steinhauser, Ber. Buns. Phys. Chem., 87, 128–150 (1983).Google Scholar
  10. 10.
    Yu. G. Bushuev and A. K. Lyashchenko, Zh. Fiz. Khim., 70, No. 3, 416–421 (1996).Google Scholar
  11. 11.
    V. S. Dunyashev, Yu. G. Bushuev, and A. K. Lyashchenko, Zh. Fiz. Khim., 70, No. 3ibid., 422–428.Google Scholar
  12. 12.
    V. S. Dunyashev and A. K. Lyashchenko, Abstracts of Papers from the 8th International Conference “ Problems of Solvation and Complexation in Solutions,” IGKhTU, Ivanovo (2001), p. 134.Google Scholar
  13. 13.
    H. Berendsen, J. Postma, W. van Gunsteren, and J. Hermans, Intermolecular Forces, B. Pullman (ed.), Reidel, Dordrecht (1981), pp. 331–342.Google Scholar
  14. 14.
    H. Berendsen, J. Grigera, and T. Straatsma, J. Phys. Chem., 91, 6269–6271 (1987).CrossRefGoogle Scholar
  15. 15.
    Y. Kataoka, H. Hamada, S. Nose, T. Yamamoto, J. Chem. Phys., 77, 5699–5715 (1982).CrossRefGoogle Scholar
  16. 16.
    I. Svishchev and P. Kusalik, ibid., 99, 3049–3058 (1993).CrossRefGoogle Scholar
  17. 17.
    I. Svishchev and A. Zassetsky, ibid., 112, 1367–1372 (2000).CrossRefGoogle Scholar
  18. 18.
    K. R. Gallagher and K. A. Sharp, J. Am. Chem. Soc., 125, 9853–9860 (2003).CrossRefGoogle Scholar
  19. 19.
    A. K. Lyashchenko and V. S. Dunyashev, Water: Structure, State, Solvation. Recent Advances [in Russian], A. M. Kutepov (ed.), Nauka, Moscow (2003), pp. 107–145.Google Scholar
  20. 20.
    A. K. Lyashchenko and V. S. Dunyashev, Zh. Strukt. Khim., 44, No. 5, 909–915 (2003).Google Scholar
  21. 21.
    A. K. Lyashchenko and V. S. Dunyahev, J. Mol. Liq., 106, Nos. 2/3, 199–213 (2003).CrossRefGoogle Scholar
  22. 22.
    G. C. Pimentel and A. L. McClellan, The Hydrogen Bond, Freeman, San Francisco (1960).Google Scholar
  23. 23.
    L. V. Dunyashev, V. S. Dunyashev, and A. K. Lyashchenko, Abstracts of Papers from the 9th International Conference “Problems of Solvation and Complexation in Solutions,” Ivanovo Publishers, Ples, (2004), pp. 251/252.Google Scholar
  24. 24.
    A. Soper, F. Bruni, and M. Ricci, J. Chem. Phys., 106, No. 1, 247–254 (1997).CrossRefGoogle Scholar
  25. 25.
    A. Rahman and F. H. Stillinger, J. Am. Chem. Soc., 95, 7943–7948 (1973).CrossRefGoogle Scholar
  26. 26.
    F. H. Stillinger and A. Rahman, J. Chem. Phys., 60, 1545–1556 (1974).CrossRefGoogle Scholar
  27. 27.
    F. H. Stillinger, Adv. Chem. Phys., 31, 1–101 (1975).Google Scholar
  28. 28.
    A. K. Lyashchenko and T. A. Novskova, Zh. Fiz. Khim., 78, No. 7, 1175–1181 (2004).Google Scholar
  29. 29.
    A. K. Lyashchenko and T. A. Novskova, Biomed. Tekhnol. Radioelektron., Nos. 1/2, 40–50 (2005).Google Scholar
  30. 30.
    A. K. Lyashchenko, Zh. Fiz. Khim., 67, No. 2, 281–289 (1993).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. K. Lyashchenko
    • 1
  • L. V. Dunyashev
    • 1
  • V. S. Dunyashev
    • 1
  1. 1.N. S. Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscow

Personalised recommendations