Advertisement

Journal of Structural Chemistry

, Volume 47, Issue 4, pp 691–698 | Cite as

Energy optimization of water polyhedra. II. Classification of optimal configurations in clusters from a cube up to fullerene

  • M. V. Kirov
Article

Abstract

Using a combinatory optimization method based on discrete models of intermolecular interaction, the classes of optimal configurations in polyhedral water clusters have been calculated. By means of calculations with various pair potentials an essential advantage in energy of discretely optimized configurations is ascertained. The effect of the dipole moment of clusters on their energy is studied.

Keywords

cluster water polyhedron combinatorial optimization intermolecular interaction nanostructures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. N. Keutsch and R. J. Saykally, Proc. Natl. Acad. Sci. USA., 98, 10533–10540 (2001).Google Scholar
  2. 2.
    S. S. Xantheas, Chem. Phys., 258, 225–231 (2000).CrossRefGoogle Scholar
  3. 3.
    M. V. Kirov, Zh. Strukt. Khim., 37, No. 1, 98–106 (1996).Google Scholar
  4. 4.
    M. V. Kirov, ibid., 46, Supplement, S186–S192 (2005).Google Scholar
  5. 5.
    M. V. Kirov, ibid., 47, No. 4, 695–701 (2006).Google Scholar
  6. 6.
    S. McDonald, L. Ojamäe, and S. J. Singer, J. Phys. Chem., 102, No. 17, 2824–2832 (1998).Google Scholar
  7. 7.
    J.-L. Kuo, C. V. Ciobanu, L. Ojamäe, et al., J. Chem. Phys., 118, No. 8, 3583–3588 (2003).CrossRefGoogle Scholar
  8. 8.
    D. J. Anick, J. Mol. Struct. (Theochem.), 587, 87–96 (2002).CrossRefGoogle Scholar
  9. 9.
    D. J. Anick, ibid., 97–110.Google Scholar
  10. 10.
    D. J. Anick, J. Chem. Phys., 119, No. 23, 12442–12456 (2003).Google Scholar
  11. 11.
    M. V. Kirov, Zh. Strukt. Khim., 34, No. 4, 77–82 (1993).Google Scholar
  12. 12.
    M. V. Kirov, ibid., 43, No. 5, 851–859 (2002).Google Scholar
  13. 13.
    M. V. Kirov, ibid., 44, No. 3, 472–480 (2003).Google Scholar
  14. 14.
    M. V. Kirov, Application of Symbolic Methods and Max-Plus Algebra for Combinatorial Optimization of Cyclic and Polyhedral Clusters of Water, Preprint deposited at VINITI 08.07.2005, No. 982-2005.Google Scholar
  15. 15.
    M. V. Kirov, Zh. Strukt. Khim., 37, No. 1, 107–115 (1996).Google Scholar
  16. 16.
    F. L. Baccelli, G. Cohen, G. J. Olsder, and J. P. Quadrat, Synchronization and Linearity, An Algebra for Discrete Event Systems, Wiley Chichester (1992).Google Scholar
  17. 17.
    R. A. Cuninghame-Green, Minimax Algebra, Lecture Notes in Econ. and Math. Systems 166. Springer, Berlin (1979).Google Scholar
  18. 18.
    S. D. Belair and J. S. Francisco, Phys. Rev. A., 67, 063206 (1-6) (2003).Google Scholar
  19. 19.
    E. D. Sloan, Clathrate Hydrates of Natural Gases., Marcel Dekker Inc. Pub., New York (1997).Google Scholar
  20. 20.
    W. L. Jorgensen, J. Chandresekhar, J. D. Madura, et al., J. Chem. Phys., 79, 926–935 (1983).CrossRefGoogle Scholar
  21. 21.
    M. W. Mahoney and W. L. Jorgensen, ibid., 112, No. 20, 8910–8922 (2000).CrossRefGoogle Scholar
  22. 22.
    C. J. Burnham and S. S. Xantheas, ibid., 116, No. 12, 5115–5124 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. V. Kirov
    • 1
  1. 1.Institute of the Earth Cryosphere, Siberian DivisionRussian Academy of ScienceTyumen

Personalised recommendations