Advertisement

Journal of Structural Chemistry

, Volume 47, Issue 3, pp 420–426 | Cite as

DFT study of the geometrical and electronic structure of substituted cumulenes in netral and cationic forms

  • O. Yu. Podkopaeva
  • Yu. V. Chizhov
Article

Abstract

The geometrical and basic energy parameters of monosubstituted cumulenes and their singly and doubly charged cations were calculated by the Hartree-Fock and density functional (DFT) methods at a B3LYP level of theory using the 6-31G(d) basis set. The substituent was fluorine, cyan, amino group, phenyl, cyanophenyl, aminophenyl, or dimethylaminophenyl. In extended linear carbon systems based on cumulene, rotation of a terminal fragment depends on the character of the highest occupied molecular orbital (HOMO) from which electrons are removed. The terminal group rotates through 90 only when the contribution of electron density from the π molecular orbital (MO) of unsubstituted cumulene to the HOMO of substituted cumulene is over 70%. Otherwise, the terminal group rotates through a smaller angle; with a contribution of less than 30%, the dication is planar in any substituted cumulene. Thus quantitative criteria have been determined to evaluate the specific structural effect due to ionization of substituted cumulenes.

Keywords

cumulene quantum-chemical calculations density functional theory method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Morley, J. Phys. Chem., 99, 10166–10174 (1995).Google Scholar
  2. 2.
    J. Y. Lee, B. J. Mhin, S. Mukame, and K. S. Kim, ibid., 119, 7519–7524 (2003).CrossRefGoogle Scholar
  3. 3.
    H. Ding, T. W. Schmidt, T. Pino, et al., ibid., 814–819.Google Scholar
  4. 4.
    M. Weimer, W. Hieringer, F. Della Sala, and A. Görling, Chem. Phys., 309, No. 1, 77–87 (2005).CrossRefGoogle Scholar
  5. 5.
    V. Bodart, J. Delhalle, M. Dory, and J.-M. André, J. Opt. Soc. Am. B, 4, 1047–1054 (1987).CrossRefGoogle Scholar
  6. 6.
    B. Bildstein, O. Loza, and Yu. Chizhov, Organometal., 23, 1825–1835 (2004).CrossRefGoogle Scholar
  7. 7.
    A. V. Belikov, Yu. E. Lozovik, A. G. Nikolaev, and A. M. Popov, Chem. Phys. Lett. A, 385, 72–78 (2004).CrossRefGoogle Scholar
  8. 8.
    Yu. E. Lozovik, A. V. Minogin, and A. M. Popov, Phys. Lett. A, 313, 112–121 (2003).CrossRefGoogle Scholar
  9. 9.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Gaussian Inc., Pittsburgh, PA (2003).Google Scholar
  10. 10.
    M. van Meerssche, G. Germain, J. P. Declercq, et al., Acta Crystallogr., Sect. B, 33, 3873–3875 (1977).CrossRefGoogle Scholar
  11. 11.
    H. Irngartinger and W. Gotzmann, Angew. Chem., Int. Ed. Engl., 25, 340–342 (1986).CrossRefGoogle Scholar
  12. 12.
    W. Skibar, H. Kopacka, K. Wurst, et al., Organometal., 23, 1024–1041 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • O. Yu. Podkopaeva
    • 1
  • Yu. V. Chizhov
    • 1
  1. 1.V. A. Fock Scientific Research Institute of PhysicsSt. Petersburg State UniversityRussia

Personalised recommendations