Advertisement

Journal of Structural Chemistry

, Volume 47, Issue 2, pp 326–338 | Cite as

Triangular telluride complexes containing a cluster fragment [M33-Te)(µ2-Te2)3]4+ (M = Mo, W): Study of specific non-valence interactions

  • A. V. Virovets
  • A. L. Gushchin
  • P. A. Abramov
  • N. I. Alferova
  • M. N. Sokolov
  • V. P. Fedin
Article

Abstract

Various synthetic approaches are used to obtain new triangular complexes with rare cluster nuclei M3Te7 4+ (M = Mo, W), as well as with partial substitution for chalcogen W3Te3.8Se 3.2 4+ . The crystalline structure has been identified for K5{[Mo3Te7(CN)6]2I}·2.5H2O (I), K3{[Mo3Te7(CN)6]SeCN}·3.25H2O (II), Cs2K{ [W3Te7(CN)6]Br0.8Cl0.2}·2.5H2O (III), Cs3{ [W3Te7(CN)6]Br}·2H2O (IV), Cs1.59K1.41{[W3Te3.8Se3.2× ×(CN)6]Br}·1,5H2O (V), [W3Te7((EtO)2PS2)3]Br (VI). The compounds are characterized by IR methods and electronic spectroscopy, electrospray-mass-spectrometry. The crystalline structure of this class of compounds is analyzed. Specific non-valence interactions in these systems are considered in detail.

Keywords

clusters X-ray crystal analysis molybdenum tungsten tellurium crystalline structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. N. Sokolov, V. P. Fedin, and A. G. Sykes, Comprehensive Coord. Chem. II., 4, 761–824 (2003).CrossRefGoogle Scholar
  2. 2.
    R. Llusar, S. Uriel, C. Vicent, et al., J. Am. Chem. Soc., 126, 12076–12083 (2004).Google Scholar
  3. 3.
    J. W. Kolis, Coord. Chem. Rev., 105, 195–219 (1990).CrossRefGoogle Scholar
  4. 4.
    L. C. Roof and J. W. Kolis, Chem. Rev., 93, 1037–1080 (1993).CrossRefGoogle Scholar
  5. 5.
    D. Fenske and J. F. Corrigan, Metal Clusters in Chemistry, P. Braunstein, L. A. Oro, and P. R. Raithby (eds.), V. 3., Wiley-VCH, Weiheim (1999).Google Scholar
  6. 6.
    I. V. Kalinina and V. P. Fedin, Koordinaz. Khim., 29, 643–662 (2003).Google Scholar
  7. 7.
    J. Wachter, Eur. J. Inorg. Chem., 1367–1378 (2004).Google Scholar
  8. 8.
    D. M. Smith and J. A. Ibers, Coord. Chem. Rev., 200-202, 187–205 (2000).CrossRefGoogle Scholar
  9. 9.
    A. V. Virovets and N. V. Podberezskaya, Zh. Strukt. Khim., 34, No. 2, 150–167 (1993).Google Scholar
  10. 10.
    G.-C. Guo and T. C. W. Mak, J. Chem. Soc., Dalton Trans., 709–713 (1997).Google Scholar
  11. 11.
    A. Müller, V. Wittneben, E. Krickemeyer, et al., Zh. Anorg. Allg. Chem., 605, 175–188 (1991).CrossRefGoogle Scholar
  12. 12.
    Y. Wang, J.-Sh. Chen, H.-M. Yuan, et al., Chin. J. Chem., 19, 681–685 (2001).CrossRefGoogle Scholar
  13. 13.
    R. A. Stevens, C. C. Raymond, and P. K. Dorhout, Angew. Chem. Int. Ed., 34, 2509–2511 (1995).CrossRefGoogle Scholar
  14. 14.
    M. Mayor-Lopez, M. Weber, K. Hegetschweiler, et al., Inorg. Chem., 37, 2633–2644 (1998).CrossRefGoogle Scholar
  15. 15.
    V. P. Fedin, H. Imoto, T. Saito, et al., ibid., 34, 5097/5098 (1995).CrossRefGoogle Scholar
  16. 16.
    M. N. Sokolov, P. A. Abramov, A. L. Gushchin, et al., ibid., 44, 8116–8124 (2005).CrossRefGoogle Scholar
  17. 17.
    L. H. Brixner, J. Inorg. Nucl. Chem., 24, 257–263 (1962).CrossRefGoogle Scholar
  18. 18.
    Merlin Reference Manual, Copyright ©, Digilab, Inc (1998–2001).Google Scholar
  19. 19.
    Masslynx 3.2. Micromass, Manchester, UK (1998).Google Scholar
  20. 20.
    V. V. Volkov and K. G. Myakishev, Inorg. Chim. Acta., 289, 51–57 (1999).CrossRefGoogle Scholar
  21. 21.
    G. M. Sheldrick, SHELXTL-97 V5.10., Bruker AXS Inc., Madison, WI-53719, USA (1997).Google Scholar
  22. 22.
    G. M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area Detector Data., Univ. Göttingen, Germany (1996).Google Scholar
  23. 23.
    V. P. Fedin, H. Imoto, and T. Saito, J. Chem. Soc., Chem. Comm., 34, 1559/1560 (1995).CrossRefGoogle Scholar
  24. 24.
    V. P. Fedin, V. E. Fyodorov, H. Imoto, and T. Saito, Zh. Neorg. Khim., 42, 1963–1973 (1997).Google Scholar
  25. 25.
    N. V. Pervukhina, N. V. Podberezskaya, T. V. Kalinina, and V. P. Fedin, Zh. Strukt. Khim., 41, No. 5, 1027–1035 (2000).Google Scholar
  26. 26.
    X. Lin, H.-Y. Chen, L.-S. Chi, and H.-H. Zhuang, Polyhedron., 18, 217–223 (1999).CrossRefGoogle Scholar
  27. 27.
    H. Chen, X. Lin, L. Chi, et al., Inorg. Chem. Comm., 3, 331–336 (2000).CrossRefGoogle Scholar
  28. 28.
    F. A. Cotton, P. A. Kibala, M. Matusz, et al., Inorg. Chem., 28, 2623–2630 (1989).CrossRefGoogle Scholar
  29. 29.
    J. Marcoll, A. Rabenau, D. Mootz, and H. Wunderlich, Rev. Chim. Miner., 11, 607–615 (1974).Google Scholar
  30. 30.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed., Wiley, New York (1986).Google Scholar
  31. 31.
    G. Borgs, H. Keck, W. Kuchen, et al., Zh. Naturforsch. Teil B., B46, 1525–1531 (1991).Google Scholar
  32. 32.
    P. Klingelhöfer, U. Müller, C. Friebel, and J. Pebler, Zh. Anorg. Allg. Chem., B543, 22 (1986).CrossRefGoogle Scholar
  33. 33.
    A. V. Virovets, Yu. L. Slovokhotov, Yu. T. Struchkov, et al., Koordinatz. Khim., 16, No. 3, 331–338 (1990).Google Scholar
  34. 34.
    V. P. Fedin, M. N. Sokolov, A. V. Virovets, et al., Polyhedron., 11, No. 18, 2395–2398 (1992).CrossRefGoogle Scholar
  35. 35.
    J. Chen, Sh.-F. Lu, Z.-X. Huang, et al., Chem. Eur. J., 7, 2002–2006 (2001).CrossRefGoogle Scholar
  36. 36.
    J. Li, Z. Chen, T. J. Emge, and D. M. Proserpio, Inorg. Chem., 36, 1437–1442 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. V. Virovets
    • 1
  • A. L. Gushchin
    • 1
  • P. A. Abramov
    • 1
  • N. I. Alferova
    • 1
  • M. N. Sokolov
    • 1
  • V. P. Fedin
    • 1
  1. 1.A. V. Nikolayev Institute of Inorganic Chemistry, Siberian DivisionRussian Academy of SciencesNovosibirsk

Personalised recommendations