Journal of Structural Chemistry

, Volume 47, Issue 2, pp 247–251 | Cite as

Electronic structure and luminescent properties of antimony(III) complex compounds with nitrogen containing outer-sphere organic cations

  • A. G. Mirochnik
  • T. V. Sedakova
  • Yu. M. Nikolenko
  • V. E. Karasev


X-Ray photoelectron (XPS) and luminescent spectroscopy have been used to investigate complex compounds of antimony(III) halides with nitrogen containing organic bases. Inequality of bonds of amine and imine groups was found by XPS to disappear when complexes of antimony(III) with N,N′-diphenylguanidine (Dphg) were formed. The appearance of N1s symmetric line when transiting from Dphg to the cation N,N′-diphenylguanidine ( Dphg+) in complex compounds of antimony(III) testifies to this. The study performed demonstrates that electron density increment on the antimony(III) central atom (complexing agent) results in the bathochromic shift 3P11 S 0 of the luminescence band of antimony(III) ion.


antimony(III) complex compounds X-ray photoelectron spectra luminescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Blasse, Prog. Solid St. Chem., 18, No. 2, 79–171 (1988).CrossRefGoogle Scholar
  2. 2.
    G. Blasse, J. Luminescence, 72-74, 129–134 (1997).CrossRefGoogle Scholar
  3. 3.
    A. Vogler and H. Nikol, Pure. Appl. Chem., 64, No. 9, 1311–1317 (1992).Google Scholar
  4. 4.
    H. Kunkely, V. Pawlowski, and A. Vogler, Chem. Phys. Lett., 227, No. 3, 267–269 (1994).CrossRefGoogle Scholar
  5. 5.
    T. V. Storozhuk, A. A. Udovenko, A. G. Mirochnik, et al., Koordinats. Khim., 28, No. 3, 185–192 (2002).Google Scholar
  6. 6.
    T. V. Storozhuk, A. G. Mirochnik, N. V. Petrochenkova, and V. E. Karasev, Opt. Spectrosk., 94, No. 6, 920–923 (2003).CrossRefGoogle Scholar
  7. 7.
    B. V. Bukvetskii, T. V. Storozhuk, A. G. Mirochnik, et al., Zh. Neorg. Khim., 49, No. 1, 47–54 (2004).Google Scholar
  8. 8.
    T. V. Storozhuk, B. V. Bukvetskii, A. G. Mirochnik, V. E. Karasev, Zh. Strukt. Khim., 44, No. 5, 968–972 (2003).Google Scholar
  9. 9.
    A. G. Mirochnik, A. A. Udovenko, T. V. Storozhuk et al., Zh. Neorg. Khim., 48, No. 7, 1067–1078 (2003).Google Scholar
  10. 10.
    A. G. Mirochnik, B. V. Bukvetskii, T. V. Storozhuk, and V. E. Keresev, ibid., No. 4, 582–591.Google Scholar
  11. 11.
    A. G. Mirochnik, N. V. Petrochenkova, V. E. Karasev, et al., Koordinats. Khim., 27, No 11, 831–833 (2001).Google Scholar
  12. 12.
    N. V. Petrochenkova, T. V. Storozhuk, A. G. Mirochnik, and V. E. Karasev, ibid., 28, No. 7, 501–505 (2002).Google Scholar
  13. 13.
    A. K. Babko and I. V. Pyatnitskii, Quantity Analysis [in Russian], Gos. Nauch.-tekhn. Izd. Khim. Literatury, Moscow (1956).Google Scholar
  14. 14.
    L. V Levshin and A. M. Saletskii, Luminescence and Iits Measurement, Moscow State Univ. (1989).Google Scholar
  15. 15.
    V. N. Bocharov, S. F. Bureiko, A. Koll, and M. Rospenk, Zh. Strukt. Khim., 39, No. 4, 618–625 (1998).Google Scholar
  16. 16.
    A. Koll, M. Rospenk, S. F. Bureiko, and V. N. Bocharov, J. Phys. Org. Chem., 9, 487–497 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. G. Mirochnik
    • 1
  • T. V. Sedakova
    • 1
  • Yu. M. Nikolenko
    • 1
  • V. E. Karasev
    • 1
  1. 1.Institute of Chemistry, Far East DivisionRussian Academy of SciencesVladivostok

Personalised recommendations