Advertisement

Journal of Structural Chemistry

, Volume 46, Issue 5, pp 799–804 | Cite as

Electronic energy structure of AlxSi1−x C wide-gap semiconductor crystals

  • V. V. Ilyasov
  • T. P. Zhdanova
  • I. Ya. Nikiforov
  • A. V. Ilyasov
  • M. M. Olkhovoi
  • S. V. Vitkalova
Article
  • 21 Downloads

Abstract

The electronic structure of silicon carbide solid solutions with aluminum has been studied within the limits of a single approximation. The local coherent potential method in terms of multiple scattering theory was used. The electronic spectrum was analyzed in comparison with the experimental X-ray spectra of silicon, aluminum, and carbon. The nature of the observed features of the electronic spectrum is interpreted, and Al-Si covalent binding in solid solutions is found. Formation of vacant states with energies of 1 Ry and decreased forbidden gap in the XANES spectrum at higher aluminum contents in crystal are discussed.

Keywords

electronic structure solid solutions of silicon carbide physical properties crystal structure calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. A. Vodakov and E. N. Mokhov, Fiz. Tverd. Tela, 41, No. 5, 822–825 (1999).Google Scholar
  2. 2.
    P. G. Baranov, I. V. Il’in, E. N. Mokhov, and V. A. Khramtsov, ibid., 40, No. 10, 1818–1822 (1998).Google Scholar
  3. 3.
    Ya. A. Vodakov and E. N. Mokhov, Inst. Phys. Conf. Ser., No. 137, 197 (1994).Google Scholar
  4. 4.
    E. N. Kalabukhova, S. N. Lukin, Yu. S. Gromovoi, and E. N. Mokhov, Fiz. Tverd. Tela, 40, No. 10, 1824–1827 (1998).Google Scholar
  5. 5.
    A. A. Lebedev, A. M. Strelchuk, N. S. Savkina, et al., Pisma Zh. Teor. Fiz., 28, No. 23, 78–85 (2002).Google Scholar
  6. 6.
    V. I. Sokolov, V. V. Makarov, and E. N. Mokhov, Fiz. Tverd. Tela, 11, No. 3, 285/286 (1969).Google Scholar
  7. 7.
    Yu. S. Krasnov, T. G. Kmita, I. V. Ryzhikov, et al., ibid., 10, No. 4, 1140–1146 (1968).Google Scholar
  8. 8.
    I. S. Gorban, Yu. A. Marazuev, and Yu. M. Suleimanov, Fiz. Tekh. Poluprovodn., 4, 612–614 (1967).Google Scholar
  9. 9.
    I. I. Zhukova, V. A. Fomichev, A. S. Vinogradov, and T. M. Zimkina, Fiz. Tverd. Tela, 10, No. 5, 1383–1391 (1968).Google Scholar
  10. 10.
    V. V. Ilyasov, T. P. Zhdanova, I. Ya. Nikiforov, and A. V. Ilyasov, Zh. Strukt. Khim., 42, No. 1, 120–131 (2001).Google Scholar
  11. 11.
    V. V. Ilyasov, T. P. Zhdanova, I. Ya. Nikiforov, and A. V. Ilyasov, Phys. Status Solidi (b), 229, No. 3, 1187–1190 (2002).CrossRefGoogle Scholar
  12. 12.
    I. Ya. Nikiforov, V. V. Ilyasov, and N. Yu. Safontseva, J. Phys.: Condens. Matter, 7, 6035–6044 (1995).CrossRefGoogle Scholar
  13. 13.
    V. V. Ilyasov, N. Yu. Safontseva, and I. Ya. Nikiforov, Fiz. Tverd. Tela, 36, No. 2, 451–459 (1994).Google Scholar
  14. 14.
    M. Rohlfing, P. Kruger, and J. Pollmann, Phys. Rev. B, 48, No. 24, 17791–17799 (1993).Google Scholar
  15. 15.
    W. V. Haeringen and M. G. Junginger, Solid State Commun., 7, No. 16, 1135–1142 (1969).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. V. Ilyasov
    • 1
  • T. P. Zhdanova
    • 1
  • I. Ya. Nikiforov
    • 1
  • A. V. Ilyasov
    • 1
  • M. M. Olkhovoi
    • 1
  • S. V. Vitkalova
    • 1
  1. 1.Don State Technical UniversityRostov-on-Don

Personalised recommendations