Journal of Structural Chemistry

, Volume 46, Issue 4, pp 708–718 | Cite as

Crystal structure of [MnII (1,10-C12H8N2)3]2+[(B9C2H11)CoIII(B8C2H10)CoIII(B9C2H11)]2−·CH3CN

  • T. M. Polyanskaya
  • V. V. Volkov
  • M. K. Drozdova


A novel compound, [MnPhen3][(B9C2H11)Co(B8C2H10)Co(B9C2H11)]· CH3CN (Phen = 1,10-phenantroline), comprising a Co(III) dicobaltacarborane cluster anion has been prepared and characterized by single crystal X-ray diffraction. Crystal data are the following: C44H59B26N7Co2Mn, M = 1139.84, triclinic, space group \(P\bar 1\), unit cell parameters: a = 13.2465(11) Å, b = 14.521(2) Å, c = 15.2536(15) Å; α = 77.027(9)°, β = 88.500(8)°, γ = 77.274(9)°; V = 2788.5(5) Å3, Z = 2, dcalc = 1.358 g/cm3, T = 295 K, F(000) = 1162, μ = 0.853 mm−1. The structure was solved by the direct and Fourier methods and refined anisotropically (isotropically for hydrogen atoms) using the full-matrix technique to final factors R1 = 0.0374, wR2 = 0.0915 for 7397 I hkl ≥2σI of 9779 I hkl measured (diffractometer Enraf-Nonius CAD-4, λMoK α , graphite monochromator, θ/2θ-scanning). The structure is formed from [MnPhen3]2+ cations, [(B9C2H11)×Co(B8C2H10)Co(B9C2H11)]2− anions, and acetonitrile molecules CH3CN. Central Mn atom in the cation has a distorted octahedral coordination environment formed by six nitrogen atoms of three bi-dentate Phen ligands, average Mn-N bond length being 2.263(2) Å. The anion has a chain-like structure built from three icosahedra sharing common vertices occupied by the cobalt atoms. The central icosahedron including ten light atoms (8B, 2C) provides two vertices for the cobalt atoms shared with the other icosahedra having 11 light atoms (9B, 2C). The arrangement of-C2-groups in the anion corresponds to a quasi-gauche-configuration of asymmetric sandwich complexes of both cobalt atoms.


crystal structure Mn Co binuclear cluster phenantroline ligand ortho-carborane (12) derivatives, acetonitrile 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Francis and M. F. Hawthorne, J. Am. Chem. Soc., 90, No. 6, 1663/1664 (1968).CrossRefGoogle Scholar
  2. 2.
    T. M. Polyanskaya, V. V. Volkov, C. Price, et al., Abstr. 3-d APAM Topical Seminar. Asian Priorities in Materials Development, Novosibirsk (1999), p. 35.Google Scholar
  3. 3.
    T. M. Polyanskaya, V. V. Volkov, C. Price, et al., Khimiya v interesakh ustoichivogo razvitiya, 8, Nos. 1/2, 229–236 (2000).Google Scholar
  4. 4.
    V. V. Volkov, M. K. Drozdova, T. M. Polyanskaya, et al., Koordinats. Khim., 28, No. 6, 436–443 (2002).Google Scholar
  5. 5.
    T. M. Polyanskaya, V. V. Volkov, and M. K. Drozdova, Zh. Strukt. Khim., 44, No. 4, 690–700 (2003).Google Scholar
  6. 6.
    V. V. Volkov and C. Ya. Dvurechenskaya, Izv. Akad. Nauk SSSR, No. 10, 2356–2359 (1981).Google Scholar
  7. 7.
    A. Altomare, M. C. Burla, M. Camalli, et al., J. Appl. Crystallogr., 32, 115–119 (1999).CrossRefGoogle Scholar
  8. 8.
    G. M. Sheldrick, SHELXL-97, Release 97-2, Univ. Gottingen, Germany (1998).Google Scholar
  9. 9.
    S. Nishigaki, H. Yoshioka, and K. Nakatsu, Acta Crystallogr., B34, No. 3, 875–879 (1978).Google Scholar
  10. 10.
    D. St. Clair, A. Zalkin, and D. H. Templeton, Inorg. Chem., 8, No. 10, 2080–2086 (1969).CrossRefGoogle Scholar
  11. 11.
    A. I. Yanovskii, Usp. Khim., 54, No. 6, 881–902 (1985).Google Scholar
  12. 12.
    L. Borodinsky, E. Sinn, and R. N. Grimes, Inorg. Chem., 21, No. 4, 1686–1689 (1982).CrossRefGoogle Scholar
  13. 13.
    N. I. Kirillova, A. I. Yanovskii, and Yu. T. Struchkova, Itogi nauki i tekhniki. Kristallokhimiya, V. 15, VINITI, Moscow (1981), pp. 130–188.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • T. M. Polyanskaya
    • 1
  • V. V. Volkov
    • 1
  • M. K. Drozdova
    • 1
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian DivisionRussian Academy of SciencesNovosibirsk

Personalised recommendations