Journal of Structural Chemistry

, Volume 46, Issue 4, pp 626–632 | Cite as

Computer investigation of physical properties of water clusters. 1. Stability

  • A. E. Galashev
  • O. R. Rakhmanova


The method of molecular dynamics is applied to investigate the stability of water clusters containing up to 90 molecules. With increasing size of aggregates, (H2O)n≥10 10, their thermal stability strengthens. Mechanical stability of great clusters keeps the quickly reached level, and the coefficient of dielectric stability passes through the maximum at n = 50.


water dipole moment dielectric constant isodynamic criteria of stability cluster molecular dynamics compressibility heat capacity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. H. Stillinger and A. Rahman, J. Chem. Phys., 60, 1545–1557 (1974).CrossRefGoogle Scholar
  2. 2.
    W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, et al., ibid., 79, 926–935 (1983).CrossRefGoogle Scholar
  3. 3.
    H. Kistenmacher, C. Lie, H. Popkie, and E. Clementy, ibid., 61, 546–561 (1974).CrossRefGoogle Scholar
  4. 4.
    J. Caldwell, L. X. Dang, and P. A. Kollman, J. Am. Chem. Soc., 112, 9144–9147 (1990).CrossRefGoogle Scholar
  5. 5.
    M. W. Wojcik and E. Clementy, J. Chem. Phys., 84, 5970/5971 1986).CrossRefGoogle Scholar
  6. 6.
    M. W. Wojcik and E. Clementy, ibid., 85, 3544–3549.Google Scholar
  7. 7.
    M. E. Tuckerman, P. J. Ungar, T. von Rosenvinge, and M. L. Klein, ibid., 100, 12878–12887 (1996).Google Scholar
  8. 8.
    J. Jonas, T. de Fries, and D. J. Wilbur, ibid., 65, 582–588 (1976).CrossRefGoogle Scholar
  9. 9.
    H. L. Friedman, in: Water and Aqueous Solutions, G. W. Neilson and J. E. Enderby (eds.), Bristol and Boston: Adam Hilger (1985), pp. 117–131.Google Scholar
  10. 10.
    V. N. Chukanov and A. E. Galashev, Prospects of Power [in Russian] 7, 283–293 (2003).Google Scholar
  11. 11.
    L. X. Dang and T.-M. Chang, J. Chem. Phys., 106, 8149–8159 (1997).CrossRefGoogle Scholar
  12. 12.
    W. S. Benedict, N. Gailar, and E. K. Plyler, ibid., 24, 1139–1165 (1956).CrossRefGoogle Scholar
  13. 13.
    S. Xantheas, ibid., 104, 8821–8824 (1996).CrossRefGoogle Scholar
  14. 14.
    D. Feller and D. A. Dixon, ibid., 100, 2993–2997.Google Scholar
  15. 15.
    D. E. Smith and L. X. Dang, ibid., 100, 3757–3766 (1994).CrossRefGoogle Scholar
  16. 16.
    J. M. Haile, Molecular Dynamics Simulation. Elementary Methods, Wiley, New York (1992).Google Scholar
  17. 17.
    V. N. Koshlyakov, Problems of a Rigid Body Dynamics and of the Applied Theory of Gyroscopes [in Russian], Nauka, Moscow (1985).Google Scholar
  18. 18.
    R. Sonnenschein, J. Comp. Phys., 59, 347–350 (1985).CrossRefGoogle Scholar
  19. 19.
    V. K. Semenchenko, Selected Chapters of Theoretical Physics [in Russian], Prosveshchenie, Moscow (1966).Google Scholar
  20. 20.
    F. M. Kooni, Statistical Physics and Thermodynamics [in Russian], Nauka, Moscow (1981)Google Scholar
  21. 21.
    E. H. Gonzales, V. I. Poltev, A. V. Tepluhin, and G. G. Malenkov, Zh. Strukt. Khim., 35, No. 6, 113–121 (1994).Google Scholar
  22. 22.
    G. G. Malenkov, in: Water in Disperse Systems, B. V. Derjagin et al. (eds.), Khimiya, Moscow (1989) pp. 132–147.Google Scholar
  23. 23.
    R. J. Speedy, J. Chem. Phys., 91, 3354–3358 (1974).Google Scholar
  24. 24.
    V. P. Nikolsky (ed.), Handbook of the Chemist., V. 1, Khimiya, Leningrad (1971).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. E. Galashev
    • 1
  • O. R. Rakhmanova
    • 1
  1. 1.Institute of Thermal Physics, Ural DivisionRussian Academy of SciencesEkaterinburg

Personalised recommendations