Advertisement

Journal of Structural Chemistry

, Volume 46, Issue 3, pp 422–430 | Cite as

Gas-phase electron diffraction, vibrational spectroscopy, and quantum chemical studies of the molecular structure of 3,3-dimethyl-3-silathiane

  • E. G. Atavin
  • L. V. Khristenko
  • B. V. Lokshin
  • S. Samdal
  • S. V. Kirpichenko
  • L. V. Vilkov
Article

Abstract

The 3,3-dimethyl-3-silathiane molecule was studied by gas-phase electron diffraction and vibrational spectroscopy. The initial geometrical parameters and the force field were calculated by the B3LYP/6-311+G** method; the vibrational amplitudes of atomic pairs and vibrational corrections were calculated using the scaled B3LYP/6-311+G** force field. The molecular conformation was found to be a distorted chair with structural parameters close to the expected ones.

Keywords

gas-phase electron diffraction vibrational spectroscopy quantum chemical calculations geometrical structure 3,3-dimethyl-3-silathiane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. S. Mastryukov, A. V. Golubinskii, L. V. Vilkov, et al., Zh. Strukt. Khim., 32, No. 2, 148–150 (1991).Google Scholar
  2. 2.
    K. Borisenko, S. Samdal, I. F. Shishkov, and L. V. Vilkov, Acta Chem. Scand., 52, 312–321(1998).CrossRefGoogle Scholar
  3. 3.
    V. S. Mastryukov, S. A. Strelkov, A. V. Golubinskii, et al., Zh. Strukt. Khim., 28, No. 5, 49–55 (1987).Google Scholar
  4. 4.
    S. V. Kirpichenko, E. N. Suslova, L. L. Tolstikov, et al., Zh. Obshch. Khim., 67, No. 9, 1542–1547 (1997).Google Scholar
  5. 5.
    S. Gundersen and T. G. Strand, J. Appl. Cryst., 29, 638 (1996).CrossRefGoogle Scholar
  6. 6.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian-94, Revision E2, Gaussian, Inc., Pittsburg, PA.Google Scholar
  7. 7.
    A. P. Pulay, G. Fogarasi, F. Pang, and J. E. Boggs, J. Am. Chem. Soc., 101, 2550 (1979).CrossRefGoogle Scholar
  8. 8.
    S. V. Krasnoshchekov, A. V. Abramenkov, and Yu. N. Panchenko, Zh. Fiz. Khim., 71, 497 (1997).Google Scholar
  9. 9.
    V. A. Sipachev, J. Mol. Struct. (Theochem), 121, 143–151 (1985).CrossRefGoogle Scholar
  10. 10.
    R. A. Peters, W. J. Walker, and A. Weber, J. Raman Spectrosc., 1, 159 (1973).CrossRefGoogle Scholar
  11. 11.
    E. G. Atavin, V. S. Mastryukov, A. V. Golubinskii, et al., Zh. Strukt. Khim., 20, No. 4, 726–728 (1979).Google Scholar
  12. 12.
    Z. Nahlovska, B. Nahlovska, and H. M. Seip, Acta Chem. Scand., 23, 3534–3538 (1969).Google Scholar
  13. 13.
    G. Schultz, A. Kucsmann, and I. Hargittai, Acta Chem. Scand. Ser. A, 42, 332–336 (1988).CrossRefGoogle Scholar
  14. 14.
    L. Pierce and M. Hayashi, J. Chem. Phys., 34, 498–502 (1961).CrossRefGoogle Scholar
  15. 15.
    B. Beagley, J. J. Monaghan, and T. G. Hewitt, J. Mol. Struct., 8, 401–406 (1971).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • E. G. Atavin
    • 1
  • L. V. Khristenko
    • 2
  • B. V. Lokshin
    • 3
  • S. Samdal
    • 4
  • S. V. Kirpichenko
    • 5
  • L. V. Vilkov
    • 2
  1. 1.Omsk State UniversityRussia
  2. 2.Moscow State UniversityRussia
  3. 3.Institute of Organoelement ChemistryMoscow
  4. 4.Oslo UniversityNorway
  5. 5.Institute of Organic ChemistryIrkutsk

Personalised recommendations