Advertisement

Journal of Structural Chemistry

, Volume 45, Issue 6, pp 974–980 | Cite as

Isotope Effect on Fractional Dilatability of Solute Water as an Indicator of the H-Bonding Ability of an Aprotic Dipolar Solvent

  • E. V. Ivanov
  • V. K. Abrosimov
  • E. Yu. Lebedeva
Article

Abstract

Based on experimental data about the density of very dilute solutions of H2O and D2O in 1,4-dioxane, hexamethylphosphotriamide, and acetonitrile at 278.15 K-318.15 K we determined the limiting partial molar volume (error ±0.03 cm3·mol−1) and dilatability of the water component. A correlation equation has been derived which relates the isotope effect (IE) in the limiting excess partial molar dilatability of water to the energy of the H2O-solvent hydrogen bond. The stated IE may be used as a “structural indicator” for evaluating the ability of an aprotic dipolar solvent to undergo specific interactions through hydrogen bonding.

Keywords

solute water dipolar aprotic solvent hydrogen bond fractional bulk properties H/D isotope effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    V. K. Abrosimov, Thermodynamics of Nonelectrolyte Solutions [in Russian], Ivanovo, Institute of Solution Chemistry, USSR Academy of Sciences (1989), pp. 66/67.Google Scholar
  2. 2.
    Yu. M. Kessler, V. E. Petrenko, A. K. Lyashchenko, et al., Water: Structure, State, and Solvation. Recent Achievements, Problems in Solution Chemistry [in Russian], Nauka, Moscow (2003).Google Scholar
  3. 3.
    K. Burger, Solvation, Ionic, and Complex Formation Reactions in Non-Aqueous Solvents: Experimental Methods for Their Investigation, Elsevier, Amsterdam (1983).Google Scholar
  4. 4.
    G. Mamantov and A. I. Popov (eds.), Chemistry of Nonaqueous Solutions: Current Progress, VCH, New York (1994).Google Scholar
  5. 5.
    A. V. Karyakin and G. A. Kriventsova, State of Water in Organic and Inorganic Compounds [in Russian], Nauka, Moscow (1973).Google Scholar
  6. 6.
    W. A. P. Luck, Pure Appl. Chem., 59, No.9, 1215–1228 (1987).Google Scholar
  7. 7.
    G. A. Krestov, V. P. Korolev, and D. V. Batov, Dokl. Akad. Nauk SSSR, 318, No.3, 624–627 (1991).Google Scholar
  8. 8.
    V. I. Grasin, Chemical Sciences Candidate’s Dissertation, Institute of Solution Chemistry, Ivanovo (2002).Google Scholar
  9. 9.
    E. V. Ivanov, V. K. Abrosimov, and E. Yu. Lebedeva, Zh. Neorg. Khim., 48, No.6, 1038–1043 (2003).Google Scholar
  10. 10.
    E. V. Ivanov, V. K. Abrosimov, and E. Yu. Lebedeva, Izv. Ross. Akad. Nauk, Ser. Khim., No. 6, 1254–1260 (2003).Google Scholar
  11. 11.
    E. V. Ivanov, V. K. Abrosimov, and E. Yu. Lebedeva, Dokl. Ross. Akad. Nauk, 391, No.1, 58–61 (2003).Google Scholar
  12. 12.
    G. A. Krestov, V. P. Korolev, and D. V. Batov, Dokl. Akad. Nauk SSSR, 293, No.4, 882–884 (1987).Google Scholar
  13. 13.
    Y. Markus, Ion Solvation, Wiley, Chichester (1985).Google Scholar
  14. 14.
    E. V. Ivanov and V. K. Abrosimov, Zh. Obshch. Khim., 70, No.3, 408–419 (2000).Google Scholar
  15. 15.
    V. Gutmann, Electrochim. Acta, 21, No.9, 107–112 (1976).CrossRefGoogle Scholar
  16. 16.
    G. S. Kell, J. Phys. Chem. Ref. Data, 6, No.4, 1109–1131 (1977).Google Scholar
  17. 17.
    V. K. Abrosimov, V. V. Korolev, V. N. Afanasiev, et al. (eds.), Experimental Methods in Solution Chemistry: Densimetry, Viscosimetry, Conductometry, and Others, Problems in Solution Chemistry [in Russian], Nauka, Moscow (1997).Google Scholar
  18. 18.
    V. K. Abrosimov, Zh. Fiz. Khim., 63, No.3, 598–604 (1989).Google Scholar
  19. 19.
    V. P. Belousov and M. Yu. Panov, Thermodynamics of Aqueous Solutions of Nonelectrolytes [in Russian], Khimiya, Leningrad (1983).Google Scholar
  20. 20.
    V. P. Korolev, D. V. Batov, and G. A. Krestov, Zh. Fiz. Khim., 59, No.1, 212–214 (1985).Google Scholar
  21. 21.
    I. B. Rabinovich, Isotopy Effects on the Physicochemical Properties of Liquids [in Russian], Nauka, Moscow (1968).Google Scholar
  22. 22.
    G. A. Krestov, V. I. Vinogradov, Yu. M. Kessler, et al. (eds.), Modern Problems in Solution Chemistry [in Russian], Nauka, Moscow (1986).Google Scholar
  23. 23.
    A. Ben-Naim, Solvation Thermodynamics, Plenum, New York (1987).Google Scholar
  24. 24.
    W. C. Duer and G. L. Bertrand, J. Am. Chem. Soc., 97, No.14, 3894–3897 (1975).CrossRefGoogle Scholar
  25. 25.
    V. P. Korolev, D. V. Batov, and G. A. Krestov, Zh. Obshch. Khim., 61, No.9, 1921–1927 (1991).Google Scholar
  26. 26.
    A. A. Stolov, M. D. Borisover, B. N. Solomonov, et al., Zh. Fiz. Khim., 66, No.3, 620–625 (1992).Google Scholar
  27. 27.
    V. A. Sirotkin, B. N. Solomonov, D. A. Faizullin, and V. F. Fedotov, Zh. Strukt. Khim., 41, No.6, 1205–1212 (2000).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • E. V. Ivanov
    • 1
  • V. K. Abrosimov
    • 1
  • E. Yu. Lebedeva
    • 1
  1. 1.Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia

Personalised recommendations