Advertisement

Journal of Structural Chemistry

, Volume 45, Issue 5, pp 865–873 | Cite as

Unusual Disordering of Potassium Ions in the Structures of Cluster Rhenium Thiohalides K3[Re6S7Br7] and K4[Re6S8Cl6]

  • S. F. Solodovnikov
  • S. S. Yarovoi
  • Yu. V. Mironov
  • A. V. Vironets
  • V. E. Fedorov
Article

Abstract

New cluster compounds — rhenium and potassium thiohalides K3Re6S7Br7 (I) and K4Re6S8Cl6 (II) — have been synthesized. Their crystal structures have been determined by single crystal X-ray diffraction. The compounds are monoclinic; (I): space group P21/c, a = 9.32(1) Å, b = 13.528 Å, c = 12.413 Å, β = 110.21°, Z = 2, R = 0.038; (II): space group C2/m, a = 10.614 Å, b = 17.268 Å, c = 10.448 Å, β = 110.755°, Z = 2, R = 0.042. In both structures, the potassium ions are considerably distorted. The occupancies of the potassium sites are 0.17-0.34 (I) and 0. 01-0.26 (II), correlating well with the coordination numbers (c.n. 7-10 and 2-7 for I and II, respectively). In I, adjacent positions of potassium atoms are aggregated into discrete tetrahedral and angular clusters; in II, the individual (four-and six-membered) cyclic clusters of potassium sites are present along with bent chains of vertex-and edge-sharing tetrahedral “potassium clusters.” The shortest K-K distances in these “clusters” vary from 1.31 Å to 1.54 Å (I) and from 0.66 Å to 1.65 Å (II). The “instability” of the potassium site suggests that I and II are ion conductors.

Keywords

octahedral cluster rhenium thiohalide complex synthesis crystal structure disordering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    T. J. Saito, J. Chem. Soc., Dalton Trans., 97–105 (1999).Google Scholar
  2. 2.
    J.-C. P. Gabriel, K. Boubekeur, S. Uriel, and P. Batail, Chem. Rev., 101, 2037–2066 (2001).CrossRefPubMedGoogle Scholar
  3. 3.
    Yu. V. Mironov and V. E. Fedorov, Zh. Strukt. Khim., 40, No.6, 1154–1171 (1999).Google Scholar
  4. 4.
    N. G. Naumov, A. V. Virovets, and V. E. Fedorov, ibid., 41, No.3, 609–638 (2000).Google Scholar
  5. 5.
    G. M. Sheldrick, SHELX-97, Release 97-2, Univ. Gottingen (1997).Google Scholar
  6. 6.
    Yu. V. Zefirov, Kristallografiya, 42, No.5, 936–958 (1997).Google Scholar
  7. 7.
    W. Bronger, H.-J. Miessen, R. Neugruschel, et al., Z. Anorg. Allg. Chem., 525, No.6, 41–53 (1985).CrossRefGoogle Scholar
  8. 8.
    A. Perrin, New J. Chem., 14, Nos. 6/7, 561–567 (1990).Google Scholar
  9. 9.
    A. Perrin, L. Leduc, M. Potel, and M. Sergent, Mat. Res. Bull., 25, No.10, 1227–1234 (1990).CrossRefGoogle Scholar
  10. 10.
    A. Slougui, A. Perrin, and M. Sergent, Acta Crystallogr., C48, 1917–1920 (1992).Google Scholar
  11. 11.
    A. Slougui, S. Ferron, A. Perrin, and M. Sergent, J. Cluster Sci., 8, 349–359 (1997).Google Scholar
  12. 12.
    K. A. Brylev, A. V. Virovets, N. G. Naumov, et al., Izv. Ross. Akad. Nauk, Ser. Khim., No. 7, 1088–1091 (2001).Google Scholar
  13. 13.
    S. Picard, J.-F. Halet, P. Gougeon, and M. Potel, Inorg. Chem., 38, No.20, 4422–4429 (1999).CrossRefPubMedGoogle Scholar
  14. 14.
    P. D. Dernier and J. P. Remeika, J. Solid State Chem., 17, No.3, 245–253 (1976).CrossRefGoogle Scholar
  15. 15.
    C. Delmas and P.-E. Werner, Acta Chem. Scand., A32, No.4, 329–332 (1978).Google Scholar
  16. 16.
    J. J. Pluth and J. V. Smith, J. Phys. Chem., 83, No.6, 741–749 (1979).CrossRefGoogle Scholar
  17. 17.
    M. Watanabe, Y. Fujiki, Y. Kanazawa, and K. Tsukimura, J. Solid State Chem., 66, No.1, 56–63 (1987).CrossRefGoogle Scholar
  18. 18.
    P. Wu and J. A. Ibers, Acta Crystallogr., . 49, No.1, 126–129 (1993).Google Scholar
  19. 19.
    L. O. Atovmyan and E. A. Ukshe, “Solid electrolytes. Problems in crystal chemistry of superionic conductors,” in: Physical Chemistry (Modern Problems) [in Russian], Khimiya, Moscow (1983), pp. 92–115.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • S. F. Solodovnikov
    • 1
  • S. S. Yarovoi
    • 1
  • Yu. V. Mironov
    • 1
  • A. V. Vironets
    • 1
  • V. E. Fedorov
    • 1
  1. 1.A. V. Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations