Advertisement

Journal of Structural Chemistry

, Volume 45, Issue 3, pp 454–464 | Cite as

Structure and thermal behavior of metastable sillenites prepared by mechanochemical synthesis

  • V. V. Zyryanov
Article

Abstract

The structure and thermal behavior of metastable solid solutions with nominal compositions Bi2PbO4, Bi4HgO7, Bi12TlO19.5, and Bi12Cd0.7O18.7 with the sillenite structure obtained by mechanochemical treatment in a planetary mill (thermal decomposition of the metastable Bi4CdO7 phase with a bcc structure above 700 K) have been studied. The large Pb2+ atoms occupy up to ~30% positions in the sillenite structure (Hg2+ and Hg(1) occupy up to ~15% of (24f) positions). The (2a) sites are partially occupied by bismuth with a minor shift along the [111] axis and are transformed into the (8c) site, forming an umbrella structure with c.n. 3. The relatively small Cd2+and Tl3+ cations partially occupy the (2a) sites. During annealing, the metastable Pb-sillenites are partially stabilized with a loss of oxygen and increasing content of bismuth. Sillenite with a high content of lead retains its structure until it melts at 923 K. Cadmium sillenite reacts with CdO, passing into a rhombohedral structure at 900 K (30 K below the melting point). Mercury sillenite Bi4HgO7 decomposes with isolation of metallic mercury at ~600 K.

Keywords

sillenite metastable phase thermal stability mechanochemical synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Gleiter, H. 1989Prog. Mater. Sci.33223315CrossRefGoogle Scholar
  2. 2.
    Zyryanov, V. V., Sysoev, V. F., Boldyrev, V. V. 1988Dokl. Akad. Nauk SSSR300162Google Scholar
  3. 3.
    Zyryanov, V. V. 2001Konstr. Komposits. Mater.3320Google Scholar
  4. 4.
    V. V. Zyryanov, V. F. Sysoev, V. V. Boldyrev, and T. V. Korosteleva, USSR Patent No. 1375328; Byull. Izobr., No. 7, 39 (1988).Google Scholar
  5. 5.
    Zyryanov, V. V., Lapina, O. B. 2001Neorg. Mater.37331337Google Scholar
  6. 6.
    V. V. Zyryanov, ibid., No. 11, 1336–1347.Google Scholar
  7. 7.
    Zyryanov, V. V. 2002Abstr. Int. Conf. “Rapidly Quenched and Metastable Materials”RQ11Oxford, Great Britain181Google Scholar
  8. 8.
    E. G. Avvakumov, A. R. Potkin, and O. I. Samarin, USSR Patent No. 975068; Byull. Izobr., No. 43 (1982).Google Scholar
  9. 9.
    Craig, D. C., Stephenson, N. S. 1975J. Solid State Chem.1518Google Scholar
  10. 10.
    Zyryanov, V. V. 2001Neorg. Mater.3714971504Google Scholar
  11. 11.
    Zyryanov, V. V. 1998Neorg. Mater.3415251534Google Scholar
  12. 12.
    Zyryanov, V. V. 1999Neorg. Mater.3511011107Google Scholar
  13. 13.
    Radaev, S. F., Simonov, V. I. 1992Kristallografiya37914941Google Scholar
  14. 14.
    Zyryanov, V. V. 2000Neorg. Mater.366369Google Scholar
  15. 15.
    Urusov, V. S. 1987Theoretical Crystal ChemistryMoscow State UniversityMoscow[in Russian]Google Scholar
  16. 16.
    Malinovskii, V. K., Gudaev, O. A. 1986Photoinduced Phenomena in SillenitesNaukaNovosibirsk[in Russian]Google Scholar
  17. 17.
    Kirik, S. D., Kutvitskii, V. A., Koryagina, T. I. 1985Zh. Strukt. Khim.269095Google Scholar
  18. 18.
    Kutvitskii, A. V., Kosov, A. V., Skorikov, V. M.,  et al. 1976Izv. Akad. Nauk. SSSR, Neorg. Mater.12466Google Scholar
  19. 19.
    Rao, C. N. R., Gopalacrishnan, J. 1986New Directions in Solid State ChemistryCambridge Univ. PressCambridgeGoogle Scholar
  20. 20.
    V. V. Zyryanov, N. F. Uvarov, V. G. Kostrovskii, et al., Mat. Res. Soc. Symp. Proc., 755, DD6.27.1–6 (2003).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • V. V. Zyryanov
    • 1
  1. 1.Institute of Solid State Chemistry and Mechanochemistry, Siberian BranchRussian Academy of SciencesNovosibirsk

Personalised recommendations