Outer-Scale Effect of a Gaussian-Beam Wave Propagated Through Non-Kolmogorov Turbulent Atmosphere on the Beam Wander

Abstract

To date, it is a common knowledge that there exists two kinds of turbulence in Earth’s aerosphere, the Kolmogorov turbulence and the non-Kolmogorov turbulence, which has been confirmed by both increasing experimental evidences and some results of theoretical investigations. Therefore, it is necessary to further develop theory of optical wave propagation through the atmospheric turbulence, namely, to study the propagation of laser beams in the non-Kolmogorov turbulence before analyzing the joint influence of the Kolmogorov turbulence and the non-Kolmogorov turbulence on satellite laser communication. Also it is well known that the beam wander results in the performance degradation of satellite laser communication systems and exert an influence on the achievement and stability of its links. In this paper, considering a non-Kolmogorov generalized exponential power spectrum of refractive-index fluctuations, we derive the variances of beam wander for a Gaussian-beam wave in weak turbulence for a horizonal path. This spectrum includes the inner and outer scales with a generalized power law; thus, we also analyze the effect of spectral power law and outer scale variations on the beam wander. It is important to note that the expression for the beam wander variance obtained is concise closed form and independent on the optical wavelength.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    V. W. S. Chan, J. Sel. Top. Quantum Electron., 6, 959 (2000).

    Article  Google Scholar 

  2. 2.

    K. E. Wilson, J. Kovalik, A. Biswas, and W. Roberts, Proc. SPIE, 6551, 61892I-1 (2007).

    Google Scholar 

  3. 3.

    G. Baister, T. Dreischer, and E. Fischer, Proc. SPIE, 5986, 59860Z-1 (2005).

    ADS  Article  Google Scholar 

  4. 4.

    M. Toyoshima, F. Fidler, M. Pfennigbauer, and W. R Leeb, Opt. Express, 14, 4092(2006).

    ADS  Article  Google Scholar 

  5. 5.

    D. Bushuev and S. Arnon, J. Opt. Soc. Am. A, 23, 1722 (2006).

    ADS  Article  Google Scholar 

  6. 6.

    K. Kiesaleh and T. Y. Yan, California: Jet Propulsion Laboratory. Progress Report, 42-111, 75 (1992).

    Google Scholar 

  7. 7.

    M. Reyesa, A. Comerino, A. Alonso, et al., Proc. SPIE, 5160, 44 (2004).

    ADS  Article  Google Scholar 

  8. 8.

    A. S. Gurvich, Atmos. Ocean. Phys., 31, 344 (1995).

    Google Scholar 

  9. 9.

    M. S. Belen’kii, S. J. Karis, J. M. Brown, and R. Q. Fugate, Proc. SPIE, 6304, 63040U-1 (2006).

    Article  Google Scholar 

  10. 10.

    A. Zilberman, E. Golbraikh, and N. S. Kopeika, Proc. IEEE, 5987, 598702-1 (2005).

    Google Scholar 

  11. 11.

    E. Golbraikh and N. S. Kopeika, Appl. Opt., 43, 6151 (2004).

    ADS  Article  Google Scholar 

  12. 12.

    S. S. Moiseev and I. G. Chkhetiani, J. Exp. Theor. Phys., 83, 192 (1996).

    ADS  Google Scholar 

  13. 13.

    T. Elperin, N. Kleeorin, and I. Rogachevskii, Phys. Rev. E, 53, 3431 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    S. A. Smith, D. S. Fritts, and T. E. van Zandt, J. Atmos. Sci., 44, 1404 (1987).

    ADS  Article  Google Scholar 

  15. 15.

    W. Du, J. Yang, Z. Yao, et al., J. Russ. Laser Res., 35, 415 (2014).

    Article  Google Scholar 

  16. 16.

    W. Du, J. Yang, Z. Yao, et al., J. Russ. Laser Res., 36, 355 (2015).

    Article  Google Scholar 

  17. 17.

    L. Cui, B. Xue, S. Zheng, et al., J. Opt. Soc. Am. A, 29, 1091 (2012).

    ADS  Article  Google Scholar 

  18. 18.

    X. Yi and Z. Liu, Opt. Express, 20, 4232 (2012).

    ADS  Article  Google Scholar 

  19. 19.

    L. Cui, B. Xue, and X. Cao, J. Opt. Soc. Am. A, 30, 1738 (2013).

    ADS  Article  Google Scholar 

  20. 20.

    L. Cui, B. Xue, X. Cao, and F. Zhou, J. Opt. Soc. Am. A , 31, 829 (2014).

    ADS  Article  Google Scholar 

  21. 21.

    P. Deng, X. Yuan, and D. Huang, Opt. Commun., 285, 880 (2012).

    ADS  Article  Google Scholar 

  22. 22.

    L. Tan, W. Du, and J. Ma, J. Russ. Laser Res., 30, 557 (2009).

    Article  Google Scholar 

  23. 23.

    I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Proc. SPIE, 6747, 67470B-1 (2007).

    ADS  Article  Google Scholar 

  24. 24.

    L. C. Andrews and R. L. Phillips, Laser Beam Propagagtion through Random Media, SPIE Optical Engineering Press, Bellingham (2005).

    Google Scholar 

  25. 25.

    A. Erdélyi, Tables of Integral Transforms, McGraw-Hill, New York (1959).

    Google Scholar 

  26. 26.

    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York (1965).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wenhe Du.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Du, W., Yang, Z., Jin, Z. et al. Outer-Scale Effect of a Gaussian-Beam Wave Propagated Through Non-Kolmogorov Turbulent Atmosphere on the Beam Wander. J Russ Laser Res 41, 278–284 (2020). https://doi.org/10.1007/s10946-020-09876-8

Download citation

Keywords

  • atmospheric optics
  • atmospheric turbulence
  • non-Kolmogorov turbulence
  • beam wander
  • outer scale