Advertisement

Journal of Russian Laser Research

, Volume 39, Issue 4, pp 325–339 | Cite as

Quantum Evolution beyond the Markovian Semigroup — Generalizing the Stenholm–Barnett Approach

  • Dariusz ChruścińskiEmail author
Article
  • 34 Downloads

Abstract

We provide conditions for the memory kernel governing the time-nonlocal quantum master equation which guarantee that the corresponding dynamical map is completely positive and trace-preserving. This approach gives rise to the new parametrization of dynamical maps in terms of two completely positive maps – so-called legitimate pair. In fact, these new parameterizations are a natural generalization of Markovian semigroup. Interestingly our class contains recently studied models like semi-Markov evolution and collision models.

Keywords

quantum evolution Stenholm–Barnett approach Markovian semigroup 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press (2007).Google Scholar
  2. 2.
    U. Weiss, Quantum Dissipative Systems, World Scientific, Singapore (2000).Google Scholar
  3. 3.
    Á. Rivas and S. F. Huelga, Open Quantum Systems. An Introduction, Springer Briefs in Physics, Springer (2011).Google Scholar
  4. 4.
    E. B. Davies, Commun. Math. Phys., 39, 91 (1974).ADSCrossRefGoogle Scholar
  5. 5.
    V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys., 17, 821 (1976).ADSCrossRefGoogle Scholar
  6. 6.
    G. Lindblad, Commun. Math. Phys., 48, 119 (1976).ADSCrossRefGoogle Scholar
  7. 7.
    D. Chruściński and S. Pascazio, Open. Sys. Inf. Dyn., 24, 1740001 (2017).CrossRefGoogle Scholar
  8. 8.
    Á. Rivas, S. F. Huelga, and M. B. Plenio, Rep. Prog. Phys., 77, 094001 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, Rev. Mod. Phys., 88, 021002 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    I. de Vega and D. Alonso, Rev. Mod. Phys., 89, 015001 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    Li Li, M. J. W. Hall, and H. M. Wiseman, “Concepts of quantum non-Markovianity: A hierarchy,” arXiv:1712.08879.Google Scholar
  12. 12.
    S. Nakajima, Prog. Theor. Phys., 20, 948 (1958).Google Scholar
  13. 13.
    R. Zwanzig, J. Chem. Phys., 33, 1338 (1960).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    S. M. Barnett and S. Stenholm, Phys. Rev. A, 64, 033808 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    S. Maniscalco, Phys. Rev. A, 72, 024103 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    A. A. Budini, Phys. Rev. A, 69, 042107 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    A. Shabani and D. A. Lidar, Phys. Rev. A, 71, 020101(R) (2005).ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    S. Campbell, A. Smirne, L. Mazzola, et al., Phys. Rev. A, 85, 032120 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    S. Maniscalco and F. Petruccione, Phys. Rev. A, 73, 012111 (2006).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    J. Wilkie, Phys. Rev. E, 62, 8808 (2000).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Wilkie and Y. M. Wong, J. Phys. A: Math. Theor., 42, 015006 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    A. Kossakowski and R. Rebolledo, Open Sys. Inf. Dyn., 14, 265 (2007).CrossRefGoogle Scholar
  23. 23.
    A. Kossakowski and R. Rebolledo, Open Sys. Inf. Dyn., 16, 259 (2009).CrossRefGoogle Scholar
  24. 24.
    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2000).Google Scholar
  25. 25.
    H.-P. Breuer and B. Vacchini, Phys. Rev. Lett., 101, 140402 (2008).ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    H.-P. Breuer and B. Vacchini, Phys. Rev. E, 79, 041147 (2009).ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    B. Vacchini, A. Smirne, E.-M. Laine, et al., New J. Phys., 13, 093004 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    F. A. Wudarski, P. Należyty, G. Sarbicki, and D. Chruściński, Phys. Rev. A 91, 042105 (2015).ADSCrossRefGoogle Scholar
  29. 29.
    B. Vacchini, Phys. Rev. Lett., 117, 230401 (2016).ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    D. Chruściński and A. Kossakowski, Europhys. Lett., 97, 20005 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    D. Chruściński and A. Kossakowski, Phys. Rev. A, 94, 020103(R) (2016).Google Scholar
  32. 32.
    D. Chruściński and A. Kossakowski, Phys. Rev. A, 95, 042131 (2017).ADSCrossRefGoogle Scholar
  33. 33.
    K. Siudzińska and D. Chruściński, Phys. Rev. A, 96, 022129 (2017).Google Scholar
  34. 34.
    F. Ciccarello, G. M. Palma, and V. Giovannetti, Phys. Rev. A, 87, 040103(R) (2013).Google Scholar
  35. 35.
    W. K. Wootters and B. D. Fields, Ann. Phys., 191, 363 (1989).ADSCrossRefGoogle Scholar
  36. 36.
    M. Nathanson and M.B Ruskai, J. Phys. A: Math. Theor., 40, 8171 (2007).ADSCrossRefGoogle Scholar
  37. 37.
    D. Chruściński and K. Siudzińska, Phys. Rev. A, 94, 022118 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Physics, Faculty of Physics, Astronomy, and InformaticsNicolaus Copernicus UniversityToruńPoland

Personalised recommendations