Advertisement

Journal of Russian Laser Research

, Volume 37, Issue 6, pp 544–555 | Cite as

Continuous Sets of Dequantizers and Quantizers for One-Qubit States*

  • Peter Adam
  • Vladimir A. Andreev
  • Aurelian Isar
  • Margarita A. Man’ko
  • Vladimir I. Man’ko
Article

Abstract

We show the star-product quantization procedure for spin-1/2 particles (qubits) employing the construction of a pair of operators – dequantizers and quantizers. We present an explicit description of all minimal systems of such dequantizers and quantizers and discuss their relation to the probability representation of spin states where the fair probability distribution is identified with the spin states. We give some examples and discuss the possibility of constructing a symplectic structure in the finite-dimensional phase space.

Keywords

discrete Wigner function operator symbols spin states star-product quantizers dequantizers symplectic structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Lizzi and P. Vitale, SIGMA, 10, 086 (2014).MathSciNetGoogle Scholar
  2. 2.
    O. Man’ko, V. Man’ko, and G. Marmo, J. Phys. A: Math. Gen., 35, 699 (2002).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    S. L. Stratonovich, Sov. Phys. JETP, 4, 891 (1957).MathSciNetGoogle Scholar
  4. 4.
    K. E. Cahill and R. J. Glauber, Phys. Rev., 176, 1857 (1968).Google Scholar
  5. 5.
    K. E. Cahill and R. J. Glauber, Phys. Rev., 177, 1882 (1969).ADSCrossRefGoogle Scholar
  6. 6.
    M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, Phys. Rep., 106, 121 (1984).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    V. I. Tatarskii, Sov. Phys. Uspekhi, 26, 331 (1983).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    A. B. Klimov and S. M. Chumakov, A Group-Theoretical Approach to Quantum Optics, Wiley, Wenheim (2009).CrossRefGoogle Scholar
  9. 9.
    L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press (1995).Google Scholar
  10. 10.
    M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press (1997).Google Scholar
  11. 11.
    W. P. Schleich, Quantum Optics in Phase Space, Wiley (2001).Google Scholar
  12. 12.
    E. P. Wigner, Phys. Rev., 40, 749 (1932).ADSCrossRefGoogle Scholar
  13. 13.
    K. Husimi, Proc. Phys. Math. Soc. Jpn., 22, 264 (1940).Google Scholar
  14. 14.
    Y. J. Kano, J. Math. Phys., 6, 1913 (1965).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    R. J. Glauber, Phys. Rev. Lett., 10, 84 (1963).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    E. C. G. Sudarshan, Phys. Rev. Lett., 10, 277 (1963).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    S. Mancini, V. I. Man’ko, and P. Tombesi, Quantum Semiclass. Opt., 7, 615 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    S. Mancini, V. I. Man’ko, and P. Tombesi, Phys. Lett. A, 213, 1 (1996).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Mancini, V. I. Man’ko, and P. Tombesi, Found. Phys., 27, 801 (1997).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Ibort, V. I. Man’ko, G. Marmo, et al, Phys. Scr., 79, 065013 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    V. A. Andreev, D. M. Davidović, M. G. Davidović, et al., Theor. Math. Phys., 166, 356 (2011).CrossRefGoogle Scholar
  22. 22.
    J. Schwinger, Proc. Natl. Acad. Sci. USA, 46, 570 (1960).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    W. K. Wootters, IBM J. Res. Dev., 48, 99 (2004) [arXiv:quant-ph/0306135v4 9 Aug 2003].Google Scholar
  24. 24.
    A. Vourdas, Acta Applic. Math., 93, 197 (2006).MathSciNetCrossRefGoogle Scholar
  25. 25.
    K. S. Gibbons, M. J. Hoffman, and W. K. Wootters, Phys. Rev. A, 70, 062101 (2004) [arXiv:quantph/0401155v6 2 Apr 2005].Google Scholar
  26. 26.
    A. B. Klimov, J. L. Romero, G. Björk, and L. L. Sánchez-Soto, J. Phys. A: Math. Gen., 40, 3987 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    M. O Scully, Phys. Rev. D, 28, 2477 (1983).ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    P. Stóvicék and J. Tolar, Rep. Math. Phys., 20, 157 (1984).ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    S. Chaturvedi, E. Ercolessi, G. Marmo, et al., J. Phys. A: Math. Gen., 39, 1405 (2006).ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    S. N. Filippov and V. I. Man’ko, Phys. Scr., T143, 014010 (2011).ADSCrossRefGoogle Scholar
  31. 31.
    S. N. Filippov and V. I. Man’ko, Phys. Scr., 83, 058101 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    S. N. Filippov and V. I. Man’ko, J. Phys. A: Math. Gen., 32, 56 (2011).Google Scholar
  33. 33.
    M. O. Terra-Cuñha, V. I. Man’ko, and M. O. Scully, Found. Phys. Lett., 14, 103 (2001).MathSciNetCrossRefGoogle Scholar
  34. 34.
    V. V. Dodonov and V. I. Man’ko, Phys. Lett. A, 229, 335 (1997).ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    V. I. Man’ko and O. V. Man’ko, J. Exp. Theor. Phys., 85, 430 (1997).ADSCrossRefGoogle Scholar
  36. 36.
    V. A. Andreev and V. I. Man’ko, Sov. Phys. JETP, 87, 239 (1998).ADSCrossRefGoogle Scholar
  37. 37.
    V. A. Andreev, O. V. Man’ko, V. I. Man’ko, and S. S. Safonov, J. Russ. Laser Res., 19, 340 (1998).Google Scholar
  38. 38.
    V. Man’ko, G. Marmo, A. Simoni, and F. Ventriglia, Phys. Lett. A, 372, 6490 (2008).ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    F. Bayen, M. Flato, C. Fronsdal, et al., Lett. Math. Phys., 1, 521 (1977).ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    P. Adam, V. A. Andreev, A. Isar, et al., Theor. Math. Phys., 186, 346 (2016).MathSciNetCrossRefGoogle Scholar
  41. 41.
    V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, J. Russ. Laser Res., 24, 507 (2003).CrossRefGoogle Scholar
  42. 42.
    V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, Phys. Lett. A, 327, 353 (2004).ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    A. A. Kirillov, Elements of the Theory of Representations, Grundlehren der Mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics, Springer-Verlag (1976), Vol. 220.Google Scholar
  44. 44.
    B. Kostant, Amer. J. Math., 85, 327 (1963).MathSciNetCrossRefGoogle Scholar
  45. 45.
    P. Adam, V. A. Andreev, I. Ghiu, et al., J. Russ. Laser Res., 35, 3 (2014).CrossRefGoogle Scholar
  46. 46.
    P. Adam, V. A. Andreev, I. Ghiu, et al., J. Russ. Laser Res., 35, 427 (2014).CrossRefGoogle Scholar
  47. 47.
    S. Weigert, Int. J. Mod. Phys., 20, 1942 (2006).ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    J.-P. Amiet and S. Weigert, J. Phys. A: Math. Gen., 31, L543 (1998).ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    J.-P. Amiet and S. Weigert, J. Phys. A: Math. Gen., 32, 2777 (1999)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    J.-P. Amiet and S. Weigert, J. Phys. A: Math. Gen., 32, L269 (1999).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Peter Adam
    • 1
  • Vladimir A. Andreev
    • 2
  • Aurelian Isar
    • 3
  • Margarita A. Man’ko
    • 2
  • Vladimir I. Man’ko
    • 2
  1. 1.Institute for Solid State Physics and Optics Wigner Research Centre for PhysicsHungarian Academy of SciencesBudapestHungary
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.National Institute of Physics and Nuclear EngineeringBucharest-MagureleRomania

Personalised recommendations