Journal of Russian Laser Research

, Volume 37, Issue 5, pp 521–532 | Cite as

On Nonlocality of Quantum Objects



We present an option of the experiment with a correlated pair of particles in the entangled state, which provides the effect of a change in the polarization for entangled photons, and demonstrate the reality of all different superposition states and the corresponding vector of the quantum system state; also we analyze possible consequences of this fact. We propose a quantum realism paradigm within the relational paradigm instead of the local realism concept disproved by the experiments on verifying the Bell inequalities. We analyze the results of experimental research of the Leggett inequality violation with respect to the verification of the adequacy of different kinds of nonlocal hidden variable theories and suggest a new way of their evaluation based on the study of the photon cross-correlation suppression after a beam splitter and preparation of quantum squeezed states. We show that the interpretation based on the nonlocal hidden variable theory is inconsistent.


quantum particles quantum entanglement quantum squeezed states nonlocality Copenhagen interpretation relational paradigm hidden variables quantum state vector physical reality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Belinsky and D. N. Klyshko, Laser Phys., 6, 1082 (1996).Google Scholar
  2. 2.
    A. V. Belinsky, Phys. Uspekhi, 46, 877 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    A. V. Belinsky, Quantum Measurements [in Russian], BINOM, Moscow (2008).Google Scholar
  4. 4.
    J. von Neumann, The Mathematical Foundations of Quantum Mechanics, Princeton University Press (1955).Google Scholar
  5. 5.
    M. B. Mensky, Phys. Uspekhi, 41, 923 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    V. B. Braginsky and F. Ya. Khalili, Quantum Measurement, Cambridge University Press (2003).Google Scholar
  7. 7.
    G. G. Malinetskiy and T. S. Akhromeyeva, “New problems of measurement theory” [in Russian], Materials of the XIII all-Russian Conference “State and Problems of Measurements,” Bauman Technical University, Moscow (22 — 24 April, 2015), p. 10.Google Scholar
  8. 8.
    B. Hessmo, P. Usachev, H. Heydar, and G. Björk, Phys. Rev. Lett., 92, 180401 (2004).Google Scholar
  9. 9.
    S. A. Babichev, J. Appel, and A. I. Lvovsky, Phys. Rev. Lett., 92, 193601 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    M. Fuwa, S. Takeda, M. Zwierz, et al., Nature Commun., 6, 6665 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    L. Vaidman, Phys. Rev. A, 87, 052104 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    A. Danan, D. Farfurnik, S. Bar-Ad, and L. Vaidman, Phys. Rev. Lett., 111, 240402 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    J. S. Bell, Physics, 1, 195 (1964).Google Scholar
  14. 14.
    J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett., 23, 880 (1969).ADSCrossRefGoogle Scholar
  15. 15.
    D. N. Klyshko, “Foundamental problems in quantum theory,” in: D. M. Greenberger and A. Zeilinger (Eds.), Annual Meeting of the New York Academy of Sciences (Baltimore, MD, 1994), New York Academy of Sciences, New York (1995), Vol. 755, p. 13.Google Scholar
  16. 16.
    A. Khrennikov, Entropy, 10, 19 (2008).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett., 47, 460 (1981).ADSCrossRefGoogle Scholar
  18. 18.
    A. Aspect, P. Aspect, and G. Aspect, Phys. Rev. Lett., 49, 91 (1982).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Aspect, J. Dalibar, and G. Roger, Phys. Rev. Lett., 49, 1804 (1982).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    B. Hensen, H. Bernien, A. E. Dreáu, et al., Nature, 526, 682 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    M. Giustina, M. A. M. Versteegh, S. Wengerowsky, et al., Phys. Rev. Lett., 115, 250401 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    A. Khrennikov, AIP Conf. Proc., 1424, 160 (2012); arXiv:1108.0001v3 [quant-ph].Google Scholar
  23. 23.
    A. V. Belinsky and D. N. Klyshko, Phys. Uspekhi, 36, 653 (1993).ADSCrossRefGoogle Scholar
  24. 24.
    N. Bohr, Collected Works. The Emergence of Quantum Mechanics, North Holland Physics Publishing (1994), Vol. 5, p. 24.Google Scholar
  25. 25.
    A. J. Leggett, Found. Phys., 33, 1469 (2003).MathSciNetCrossRefGoogle Scholar
  26. 26.
    S. Gröblacher, T. Paterek, R. Kaltenbaek, et al., Nature, 446, 871 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    A. V. Belinsky, Moscow Univ. Phys. Bull., No. 3, 34 (1999).Google Scholar
  28. 28.
    N. Gisin, The Message of Quantum Science, Lecture Notes in Physics, 899, 195 (2015).ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    A. Zeilinger, Found. Phys., 29, 631 (1999).MathSciNetCrossRefGoogle Scholar
  30. 30.
    C. Brukner and A. Zeilinger, Acta Phys. Slovaca, 49, 647 (1999).Google Scholar
  31. 31.
    C. Brukner and A. Zeilinger, Phys. Rev. Lett., 83 3354 (1999).ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    A. V. Belinsky, Opt. Spectrosc., 96, 665 (2004).ADSCrossRefGoogle Scholar
  33. 33.
    N. V. Evdokimov, D. N. Klyshko, V. P. Komolov, and V. A. Yarochkin, Phys. Uspekhi, 39, 83 (1996).ADSCrossRefGoogle Scholar
  34. 34.
    A. Plotnitsky and A. Khrennikov, Found. Phys., 45, 1269 (2015).ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    A. V. Belinsky and A. K. Zhukovskiy, Moscow Univ. Phys. Bull., 71, 253 (2016).ADSCrossRefGoogle Scholar
  36. 36.
    C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett., 59, 2044 (1987).ADSCrossRefGoogle Scholar
  37. 37.
    S. A. Akhmanov, N. N. Akhmediev, A. V. Belinsky, et al., New Physical Principles of Optical Processing of Information [in Russian], Nauka, Moscow (1990), Ch. 3.Google Scholar
  38. 38.
    U. Leonhardt, it Measuring the Quantum State of Light, Cambridge University Press (1997), p. 79.Google Scholar
  39. 39.
    D. N. Klyshko, Photons and Nonlinear Optics, CRC Press (1988).Google Scholar
  40. 40.
    R. E. Slusher, L. W. Hollberg, B. Yurke, at al., Phys. Rev. Lett., 55, 2409 (1985).Google Scholar
  41. 41.
    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integration, McGraw–Hill (1965).Google Scholar
  42. 42.
    A. Aufféves and P. Grangier, Found. Phys., 46, 121 (2015); arXiv:1409.2120 [quant-ph] (2014).Google Scholar
  43. 43.
    A. Aufféves and P. Grangier, arXiv:16013966v2 [quant-ph] (2016).Google Scholar
  44. 44.
    A. V. Belinsky, Laser Phys., 12, 665 (2002).Google Scholar
  45. 45.
    A. V. Belinsky and Yu. S. Vladimirov, Space Time Fundam. Interact., 1, 32 (2016).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Physics FacultyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations